

Post-K Status and Lustre Testing Reports

Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED May. 14th, 2019

Outline

Lustre 20 years Anniversary
Post-K Development in Fujitsu
Lustre Testing Reports

2019: Lustre 20 year Anniversary

20 years Lustre History

- 1999: Lustre file system Project Started by Peter J. Braam
- 2001: Cluster File Systems
- 2007/9: Sun's Acquisition of Cluster File Systems
- 2009/4: Oracle's Acquisition of Sun
- 2010/4: Oracle limited Lustre support to Oracle's Hardware
 - Three Lustre community: <u>EOFS@EU</u>, US DOE <u>OpenSFS</u>, World Wide <u>HPCFS</u>
- 2010/9: Establishment of Whamcloud
 - Lustre Engineer moved from Oracle to Whamcloud
- 2010/12: Oracle freezed Lustre Development
- 2011/4: OpenSFS and EOFS re-started@LUG2011
- 2012/7: Intel's Acquisition of Whamcloud
- 2018/6: DDN's Acquisition of Intel's Lustre Business, Establishment of Brand-new Whamcloud2
- 2019: Luster 20 years anniversary

LUG2009: Lustre 10th Anniversary

Copyright 2019 FUJITSU LIMITED

LUG 2011: Single Community

2018/6: DDN's Acquisition of Intel's Lustre Business

ISC18: Lustre BoF

Post-K Development in Fujitsu

Post-K Project: from presentation slides of Prof. Ishikawa@The 1st R-CCS International Symposium February 18-19, 2019

Post-K Project(2)

An Overview of Post-K Hardware

- 150k+ node
- Two types of nodes
 - Compute Node and Compute & I/O Node connected by Fujitsu TofuD, 6D mesh/torus Interconnect
- 3-level hierarchical storage system
 - 1st Layer
 - One of 16 compute nodes, called Compute & Storage I/O Node, has SSD about 1.6 TB
 - Services
 - Cache for global file system
 - Temporary file systems
 - Local file system for compute node
 - Shared file system for a job
 - 2nd Layer
 - Fujitsu FEFS: Lustre-based global file system
 - 3rd Layer
 - Cloud storage services

20019/2/18

R

Compute Node + Compute&IO Node CN --- CN --- CN --- CN ---CASION ... CN ... CASION ... CN ... CASION ... CN Frontend Login Nodes CN *** CN *** Cloud Storage CESION --- CN ---C&SION ··· CN ··· C&SION --- CN ---Gateway Nodes Pre/Post Processing CN --- CN --- CN ---Nodes Large-Memory Nodes CASION ··· CN ··· C&SION C&SION Visualization Nodes I/O Network Network Shared File Systems OSS MDS MDS MGS MGS OSS Intranet Internet MDT MGT 2nd Storage **RIKEN** Center for Computational Science

Post-K Project(3)

Post-K Programming Environment

- Programing Languages and Compilers provided by Fujitsu
 - Fortran2008 & Fortran2018 subset
 - C11 & GNU and Clang extensions
 - C++14 & C++17 subset and GNU and Clang extensions
 - OpenMP 4.5 & OpenMP 5.0 subset
 - Java
 - GCC, LLVM, and Arm compiler will be also available
- Parallel Programming Language & Domain Specific Library provided by RIKEN
 - XcalableMP
 - FDPS (Framework for Developing Particle Simulator)
- Process/Thread Library provided by RIKEN
 - PiP (Process in Process)

- Script Languages provided by Fujitsu
 - E.g., Python+NumPy, SciPy
- Communication Libraries
 - MPI 3.1 & MPI4.0 subset
 - Fujitsu MPI (Based on Open MPI), Riken MPI (Based on MPICH)
 - Low-level Communication Libraries
 - uTofu (Fujitsu), LLC(RIKEN)
- File I/O Libraries provided by RIKEN
 - pnetCDF, DTF, FTAR
- Math Libraries
 - BLAS, LAPACK, ScaLAPACK, SSL II (Fujitsu)
 - EigenEXA, Batched BLAS (RIKEN)
- Programming Tools provided by Fujitsu
 - Profiler, Debugger, GUI

Post-K Project(4)

Other Software

- Batch Job System (Fujitsu)
 - Technical Computing Suite
 - Successor of K's batch job system
- Operating System on Compute Nodes
 - Linux (Fujitsu)
 - McKernel, Light-weight Kernel (RIKEN)
 - Executes the same binary of Linux without any recompilation
 - One of advantages is that McKernel provides much larger page sizes
 - Applications, accessing a huge memory area randomly, may benefit
 - User may select one of McKernel configurations without rebooting

- Other User-Land
 - A Linux distribution
- Open Source Management Tools
 - Spack/EasyBuild

		McKernel Default 4K	McKernel Default 64K	Linux
.text		4K	64K	64K
.data		64K,2M,32M, 1G	2M, 512M	2M
.bss		64K,2M,32M, 1G	2M, 512M	2M
Stack		64K,2M,32M, 1G	2M, 512M	2M
malloc		64K,2M,32M, 1G	2M, 512M	2M
thread stack		64K,2M,32M, 1G	2M, 512M	2M
Shared memory	System V IPC	64K,2M,32M, 1G	2M, 512M	64K
	POSIX	4K	64K	64K
	XPMEM	64K,2M,32M, 1G	2M, 512M	64K

A64FX Chip Overview

FUjitsu

Peak Performance

Memory Peak B/W

SIMD

of Cores

Memory

>2.7TFLOPS

512-bit

48 + 4

HBM2

1024GB/s

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

240GB/s x2 (in/out)

1.1TFLOPS

256-bit

32+2

HMC

Post-K system configuration

Scalable design

Strong Relationship with Arm HPC community

Arm

Great Establishment and Contribution to Arm HPC base such as SVE Support of Linux GCC and OpenHPC https://developer.arm.com/hpc

Linaro

- Building binary portability on Arm HPC
 - Standardization of Arm Basic System Software (Linux Kernel, glibc, GCC etc.) and Upstreaming to OSS community
 - Developing and upstreaming SVE software to OSS community https://www.linaro.org/sig/hpc/

OpenHPC

- Developing Standard IA and Arm HPC software portability
- Distribution Schedule
 - 2017/11: v1.3.3 for Arm Normal version distributed
 - 2018/6: v1.3.5 for Arm distributed

http://www.openhpc.community/

Lustre Testing Reports

Lustre 2.10.5

Lustre 2.10.x Testing Results @Fujitsu

Failure Analysis on FEFS (Lustre.2.10.5+LU-9120+LU-9480)

Failure by Components

Reason

Testing Results Error: LNet Network Health

Testing Error Summery on LNet Network Health

- 1. Unable to detect device faults from IB event queue (LU-12287)
- 2. Preferred flag of route selection policy does not work (LU-12288)
- 3. Route with fault remote device selected on separated IB subnet (LU-12289)
- 4. Inconsistent Timeout value (one is 5sec, the others are 50s) (LU-12290)
- 5. Wrong NI selection on asymmetric Multi-rail environment (LU-12291)
- 6. Decrementing Health Value even if recovery processing fault (LU-12292)
- 7. Wrong counting remote device fault as local device fault (LU-12287)
- 8. Memory leak after router checker packet processing (LU-12293)
- 9. Memory leak after recovery packet processing (LU-12294)

No.1 Unable to detect device faults from IB event queue

Issue

- Unable to detect device hardware errors such as hardware errors and link down errors
- Why came from?
 - Current implementation only processes CQ error, and does not handle async event data
- Proposed Solution
 - Add async event handler routine by using ib_register_event_handler()

No.6: Decrement Health Value even if recovery processing fault

Issue

- Unable to use route for a while after device failure recovery
- Why came from?
 - Health value is:
 - Used to know error route
 - Decreased when a routing error is detected
 - Health value continues to be decreased in device failure phase to be zero
 - After a device recovery from the device failure, the health value is increased.
 - In this case, it takes number of loops until the device can be used even if the device can be used

Proposed Solution

- Stopping health value decrement after a device failure is detected and handles in Inet_msg->msg_recovery for the following status:
 - LNET_MSG_STATUS_LOCAL_DROPPED (Connection failure)
 - LNET_MSG_STATUS_LOCAL_TIMEOUT (Connection timeout)

Decrement Health Value even if recovery processing fault

No.7: Wrong counting remote device fault as local device fault

Issue

- After remote device failure, local node still sends to the failure remote device using different local device
- Why came from?
 - When remote device failure is detected, HV of the local device is decreased.
 - IB0 is not used and local device uses IB1 to send IB0 of remote device.

Solution

- Device failure of remote device can be detected by connection failed or connection time out.
- In the cases, receiving the following events should be decrement as remote device HV
 - LNET_MSG_STATUS_LOCAL_DROPPED (Connection Failure)
 - LNET_MSG_STATUS_LOCAL_TIMEOUT (Connection timeout)

The other under investigating Failures

MDS Panic on DNE2 directory removing (LU-12295)

■ In case of full of MDT disk and returning –ENOEPC

■ In case of failure of memory allocation and returning –ENOMEM

As a result of out_tx_write_exec() function returns error

Etc...

FUJTSU

shaping tomorrow with you