
Taking	aim	at	ENOSPC:	New	layouts	for	an		
old	problem	

Self-Extending	Progressive	File	
Layouts	(SEPFL)	

5/17/18	 Copyright	2018,	Cray	Inc.	 1	



Progressive	File	Layouts	

•  Allow	different	layouts	for	different	areas	of	a	
file	

•  Rich	ground	for	new	features:	
Data	on	MDT	
FLR:	Mirroring,	erasure	coded,	etc.	

•  Major	improvements	to	ease	of	use,	
performance,	reliability,	etc.	

5/17/18	 Copyright	2018,	Cray	Inc.	 2	



Pools	&	Tiering	

•  Pools	&	Xering	are	an	obvious	applicaXon	of	
PFLDifferent	regions	of	file	on	different	
storage	classes	(pools)	

•  By	default	all	files	use	same	layout,	no	
recourse	if	a	pool	runs	out	of	space	

•  Seems	odd	but	a	major	concern	for	some	
customers	

5/17/18	 Copyright	2018,	Cray	Inc.	 3	



What	about	ENOSPC?	

•  TradiXonal	Lustre	response	–	Avoid	it	through	
improved	OST	allocaXon	

•  PFL	can	help	with	this	by	distribuXng	different	
file	regions	to	different	OSTs	(basically,	
smaller	allocaXon	“granularity”)	

•  But	it’s	all	staXc	for	a	given	file	–	If	a	file	is	on	a	
set	of	OSTs	and	they	run	out	of	space,	
allocaXon	policies	can’t	help.	

5/17/18	 Copyright	2018,	Cray	Inc.	 4	



Dynamic	Layouts	

•  Dynamic	layouts:	Layouts	that	change	
automaXcally	based	on	system	state	

•  PossibiliXes	abound,	a	lot	of	them	fall	foul	of	
“dirty	data”	problem	

•  Can’t	change	layout	component	that	client	is	
currently	wriXng	to,	no	mechanism	to	handle	
that	i/o	

5/17/18	 Copyright	2018,	Cray	Inc.	 5	



Loophole	1:	UniniXalized	Components	

•  But	you	can	change	the	extent	of	components	
which	are	not	iniXalized.	

•  UniniXalized	“virtual”	components	which	are	
never	init	

•  When	i/o	hits	one	of	these	components,	client	
sends	request	for	layout	to	the	server	

•  Instead	of	iniXng	the	component,	the	server	
replaces	the	needed	extent	with	normal	
layout	space	

5/17/18	 Copyright	2018,	Cray	Inc.	 6	



Loophole	2:	Increasing	Extents	

•  It	is	never	safe	to	reduce	the	extent	of	an	
iniXalized	component	

•  But	you	can	increase	it	by	moving	the	start	
“up”	or	the	end	“down”	

•  When	I/O	hits	a	“virtual”	component,	change	
the	extent	of	neighboring	“real”	components	
to	allow	the	i/o	to	complete	

5/17/18	 Copyright	2018,	Cray	Inc.	 7	



Self-Extending Layouts
•  Self-extending	PFL	(LU-10070)	
•  Some	PFL	segments	are	virtual,	never	
instanXated	

•  Request	in	a	virtual	segment	requires	layout	
update	

•  MDS	grants	new	layout	(extend	exisXng	
component,	spillover	to	trailing,	or	create	new)	

•  Can	make	choice	based	on	dynamic	condiXons	
(e.g.	free	space)	

5/17/18	 Copyright	2018,	Cray	Inc.	 8	



Self-Extending	Layouts	

5/17/18	 Copyright	2018,	Cray	Inc.	 9	



More than Tiering
•  Tiering	is	the	obvious	applicaXon,	described	
previously	

•  But	there’s	a	good	trick	for	files	without	
Xering	

•  “Self-spillover”	or	“spillover	restriping”	
•  When	the	exisXng	OSTs	run	low	on	space,	
create	a	new	component	with	same	striping	
properXes	

5/17/18	 Copyright	2018,	Cray	Inc.	 10	



Spillover	Restriping	

5/17/18	 Copyright	2018,	Cray	Inc.	 11	



Why	not	just	a	beger	allocator?	

•  Partly	orthogonal	to	improved	allocaXon	–	It’s	
sXll	possible	to	run	out	of	space	

•  Pools	of	small	OSTs	need	spillover	
•  Also	gives	the	allocator	more	chances	to	split	
files,	gives	more	chances	to	improve	allocaXon	
in	a	badly	balanced	file	system	

5/17/18	 Copyright	2018,	Cray	Inc.	 12	



What	about	mirror	+	resync?	

•  Interoperates	transparently	with	mirrors	+	
resync,	etc.	

•  Any	layout	can	have	self-extending	
components	

•  Extension	policy	is	just	applied	before	
instanXaXng	any	components	

•  Works	the	same	for	mirrors	as	regular	
components	

5/17/18	 Copyright	2018,	Cray	Inc.	 13	



Caveat	Emptor	

•  Not	perfect,	possibly	a	stop-gap	soluXon	
•  If	we	could	restart	i/o	on	a	layout	change	(very	
tricky),	we	could	be	truly	responsive:	
Only	change	layout	on	actual	ENOSPC	

•  Group	locks	don’t	work	today	(requirement	to	
fully	instanXate	layout)	

•  Append	has	a	similar	problem,	but	should	be	
fixable:	
LU-9341	

5/17/18	 Copyright	2018,	Cray	Inc.	 14	



Finally:	

•  Any	ques)ons?	
•  Happy	to	answer	quesXons	later	or	by	email	
(paf@cray.com)	

5/17/18	 Copyright	2018,	Cray	Inc.	 15	


