


<Insert Picture Here>

Deep Dive into Lustre Recovery Mechanisms
Johann Lombardi
Lustre engineering



Possible failures

● Network failures
● Packet loss
● Can be either a lustre request or reply

● A lustre client or server is down
● HW problems, SW crash, reboot, power outage, ....

● Distributed state inconsistencies
● State of multiple nodes out of sync



Aspects of Recovery

● Connection recovery
● Pings, evictions, lost requests or replies

● Persistent state recovery
● Server failure, journal replay & lustre replay

● Replicated state recovery
● State of multiple nodes out of sync



<Insert Picture Here>

Agenda

• Request Execution Flow
• Request Resending
• Request Replaying
• Version Based Recovery
• File I/O Recovery
• Distributed state recovery



<Insert Picture Here>

Request Execution Flow



Server Execution

● Server executes transactions
● In parallel by multiple threads

● Two stage commit:
● Commit in memory – after this, results are visible
● Commit on disk – in same order but later
● This batches the transactions



Request Lifecycle

Client Server

1. Request

4b. Commit CB

2. Execute the request

4a. Write to Server local FS

Server local FS

3a. Reply Ack
3. Reply



Client/server interaction

● Send request
● Request is allocated a transaction number (transno)
● Send reply which includes transno
● Clients acknowledge reply

● Purpose: MDS knows clients has transno
● Clients keep request & reply

● Until MDS confirms a disk commit
● Each server has disk data per client

● Last executed request, last reply information



Import/Export for RPC's

obd_device

obd_exports export export export

import import import

server side obd device (OST, MDS) 
with export list & reverse imports

client_obd

import

self_export

One client’s  obd device

with import and self export

(e.g. OSC or MDC device)

Normal client server requests

Callback requests

Other 
client

obd_device

Other 
client



Xid & transno

● Xid
● Each ptlrpc request is tagged with a specified xid
● Xid is unique for an import/export pair

● Transaction number (transno)
● Server side transaction number
● unique per target
● Servers record on disk last committed transno for each 

client



Normal Operation

● Client sends request
● Unique xid

● Server replies
● Transno allocated
● last_commited transno

● Client gets reply
● Put request in replay list
● Remove from replay list all

reqs with transno <= last 
committed



<Insert Picture Here>

Request Resending



Resending

● Client has not received any reply
● What happened?

● request OR reply was lost
● Request may have executed or not
● Server determines whether it has already processed this 

request
● Original request was lost and never reached the server

● Server executes the request
● Request was processed already but reply was lost

● Server reconstructs the reply
● Only done on MDT

● Request processing idempotent on OST



Resending (cont'd)

• Client sends connect and gets reply
• LUSTRE_IMP_RECOVER
• Resend requests from sending list



How does MDT know if a request has 
been executed already?

● MDT stores last executed xid
● Works because each client has <= one RPC in flight
● MDT processes request in xid order
● Stored on disk in the last_rcvd file

● if req xid == last processed xid
● Request has already been processed
● Reconstruct the reply



Reply reconstruction

● Only done on MDT
● No reply reconstruction on OST
● Request processing is idempotent on OST

● Use reply data stored in last_rcvd file
● store Information about each client
● lsd_client_data structure

● 1 separate slot for MDS_CLOSE request
● 1 slot for all the other request types
● Store results of RPC processing



<Insert Picture Here>

Request Replaying



Persistent State Recovery

● Server restarts after uncleaned shutdown
● SW crash, HW failure, power outage ....

● Disk filesystems need recovery
● ldiskfs journalling

● Servers roll back when they crash
● server can thus lose some transactions
● Rely on client to rebuild server state before crash

● Clients keep request & reply
● Until server confirms a disk commit
● Purpose: client can compensate for lost transactions



What happens during client recovery? 

● Clients reconnect to the server
● Server reports the last transno it committed
● Request Replay – resending requests that have 

replies
● Clients resend requests including transno's
● Server merges & sorts requests to get correct sequence
● Server re-executes requests in transno order

● Lock Replay
● After replay, only a few requests remain

● Requests for which client has not seen a reply
● Resend phase



Replay

• Client sends connect and gets reply
• MSG_CONNECT_RECOVERING is set

• Get last committed from reply which is
starting point for replay

• LUSTRE_IMP_REPLAY
• Clients replay requests

• LUSTRE_IMP_REPLAY_LOCKS
• Clients replay locks

• LUSTRE_IMP_REPLAY_WAIT
• Clients send MSG_LAST_REPLAY

• Continue with resend



Server side

● List of clients from last_rcvd file
● Calculate last_committed transno
● Set next_replay_transno to last_commit + 1

● Server orders replays by transno
● Check if replay transno == next_replay_transno and 

execute it, otherwise put replay request to waiting 
queue



Gap in transaction sequence

● Clients offer transaction sequence to servers during 
replay

● There can be gaps in the sequence
● Some clients are missing and failed to offer transaction

● Correct replay requires all clients to join
● During restart, server waits for clients to join
● No new clients are allowed to connect during recovery 

window



Recovery Window

● Clients have to reconnect within dedicated recovery window
● No new clients allowed to connect

● Server starts recovery window when first client reconnects
● Adjusted as the clients reconnect

● Clients report request service time
● After recovery times out

● if not all clients have reconnected
● clients are evicted (1.6)
● clients with version mismatch are evicted (1.8)



Example: Open-unlinked files

● On a local filesystem: both application & fs crash
● Inode put in the orphan list and is destroyed during 

filesystem recovery
● On a cluster filesystem, if server crashes

● Applications on client nodes are still alive
● Client nodes want to reopen open-unlinked files
● Open unlinked files must be retained in a separate 

directory (PENDING dir on MDT)



<Insert Picture Here>

Version Based Recovery



Motivation

● Recovery requirements are too strict
● All clients have to reconnect within specified window
● No gaps in transaction sequence are allowed

● Not aware of transaction dependencies
● Objectives

● Relax requirements
● Allowing gaps
● Allowing clients who missed the recovery 

window to rejoin
● support for disconnected operations in 

the future



Version Based Recovery Primer

● Use inode versioning
● stored on disk
● set to last transno which modified the inode

● Server replies include
● operation transno (as before) which is the new inode 

version
● BUT also the pre-op version of the inode

● Clients provide this pre-op version during replay
● Transaction is replayed only if the inode version 

matches provided pre-op version



● Client can recover even if 
gap in transaction 
sequence

● Only clients with version 
mismatch are evicted

● Client can recover later after 
recovery window is 
finished

● Client reintegrates fully if 
versions match

● Make disconnected 
operation possible

1.6 1.8

Gap in transaction sequence



Delayed Recovery

● Clients who missed the recovery window allowed to 
replay

● Provided that versions have not changed
● Delayed recovery is not working yet

● Inode versioning key feature to support this
● But still some problems to address

● e.g. Orphan recovery



Commit On Share (COS)
● Version based recovery allows to recover as much as possible 

with reconnected clients
● one of the original goals

● but can lead to incomplete recovery
● With Commit On Share we regain correctness

● Eliminates dependencies between clients by committing immediately
● Commit removes depended replays from clients
● COS only available in 2.0, not in 1.8



<Insert Picture Here>

File I/O Recovery



OST Bulk Write Handling

● Flush data & metadata before replying
● On-disk state always up to date
● No need to replay write requests



OST Bulk Write Handling with async 
journal commit feature enabled

● No forced journal flush any more
● Less disk seeks



Recovery aspects

● Data still written synchronously but metadata 
updates are now asynchronous

● Consequence: bulk writes have to be replayed by 
clients now

● Clients have to keep copy of written data in page 
cache

● Until OSS confirms metadata updates have hit the 
journal on disk

● Only possible with cached I/O, not with direct I/O



Flush journal on lock cancel

● Problem:
● Client holds extent lock and receives blocking AST
● Client flushes dirty data protected by extent lock
● Client sends lock cancel to OSS

● Client no more able to replay bulk writes
● OSS crashes

● Cannot recover state before crash
● Solution:

● Flush journal on lock cancel
● Problem with excessive stack consumption

● fixed in 1.8.3
● Procfs tunable sync_on_lock_cancel



<Insert Picture Here>

Distributed state recovery



LLOG

● For distributed transaction commits
● e.g. unlinking a file and destroying its objects

● Terminology
● Initiator – where the transaction is started
● Replicators – other nodes participating

● Normal operation
● Write a replay record for each replicator on the initiator
● Cancel that record after the replicators commit, in bulk

● Recovery
● Process the log entries on the initiator



Replicated transaction execution

Initiator writes llog record
for every replicator

replicating agent starts
further transactions

replicators process

replicators commit

replicators cookie
page is full

initiator cancels
log records



File & Object Removal - example

MDS asks each OSC to 
write an unlink record for 
the objects.

Client unlinks objects
Sends cancel cookies
to OST’s.

OST’s unlink

OST’s commit
Commit callback runs
OST llog cancel code

OST cookie
page is full

OSC cancels the 
records for the cookie
page

MDS - originator Client - replicating agent OSSs - replicators



The preceding is intended to outline our general 
product direction. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be 
relied upon in making purchasing decisions.
The development, release, and timing of any 
features or functionality described for Oracle’s 
products remains at the sole discretion of Oracle.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

