
ORNL is managed by UT-Battelle
for the US Department of Energy

Lustre + Linux

The tale of two trees

2

Upstream client progress since last LUG
• From rage to acceptance

– Merged in 2013. Left to decay for two years.
– Almost deleted from upstream twice
– Now patches merged in a few days

• Massive checkpatch cleanups have been done

• Moved from procfs to sysfs

• Updated tools to allow testing of upstream client

• Merged some of the OpenSFS clean ups for libcfs

• Synced upstream LNet layer to current master
– Made LNet stand alone for Linux kernel
– Can use default Linux kernel 4.6+ for lustre routers
– Interest in moving LNet out of staging first.

3

Impact of a functional Upstream client
• Preparing automated testing of upstream client

– Working out test failures (LU-4011)
1) Don’t test latest functionality (LU-7746)
2) Skip real test fails for now

• Submitting patches for LNet/libcfs to upstream as well as OpenSFS/Intel branch
– Upstream one change rule.

• Mostly impact new features
– Consider kernel coding style

• OpenSFS guide lines mostly the same.
• Run kernel-source/scripts/checkpatch yourpatch.diff

4

Upstream coding style difference
• 80+ character line length more relaxed

– Readability more important
– Don’t break strings
– Headers style doesn’t matter?

• Hate of spacing.
– No “int rc;”
– No “var = value1;”

• No generic naming, i.e goto failed2; …. failed2:

• No lots of returns in functions. Use goto instead.

• No return -1 or positive numbers

• Handle error handling not success handling

• http://wiki.lustre.org/Upstream_contributing

5

Upstream style versus OpenSFS style
• Resistance to some kernel styles

– “if (rc != 0” or “if (rc == 0)”
– “if (ptr != NULL)” or “if (ptr == NULL”)
– “if ((a & b) == 0)” is bad style and should be changed

• Discuss at developers day
– Use all kernel style makes porting easy
– If not using all kernel style need script to push patches upstream

6

Upstream future work
• Sync libcfs for OpenSFS/upstream

• Push lustre client code changes to upstream

• Move to standard debugging
– Tracepoint support
– Memory leak detection

• Enable kernel debugging options (kmemleaks)
• KEDR framework

7

Syncing master with upstream client
• Participants:

– Oleg Drokin, John Hammond, and Dmitry Eremin from Intel
– Frank Zago, Ben Evans from Cray
– James Simmons from ORNL

• Goals:
– Remove technical debt (LU-7917)
– Meet kernel coding styles (LU-6142)
– Remove abstractions (LU-6245 / LU-6401)
– Support newer kernels (LU-6215)
– Back port fixes for bugs from upstream (LU-4423)

8

Master’s progress since last LUG
• Support up to 4.4.6 kernels (LU-6215)

• Tool support for upstream client (LU-5030)

• Kernel coding styles enforced (LU-6142)

• Flow of upstream fixes to master (LU-4423)

• Continue cleanup of lustre headers (LU-6401)

• Work on libcfs continues (LU-6245)
– libcfs module free of user land code
– libcfs headers are uapi compliant

9

Preparing master’s server code for
upstream
• All code cleanup for clients are applied to servers

• LU-20 : Goal of no more patching the server side
– Patching only needed for ldiskfs support
– LU-3406 : raid5 mmp unplug patch
– LU-684 : Use dm flakey to test fail over
– Drop the rest of the patches since they are upstream
– Only need to patch latest kernel with LU-3406 for testing. Hopefully proper upstream

solution will be done

• LU-6220 : Push most ldiskfs patches upstream

• LU-7311 : Server, ldiskfs support for 3.18 kernels

• LU-3953 : Working lustre packaging system

10

What needs to be done for
OpenSFS/Intel branch?

• Checkpatch audit

• Back port sysfs support to OpenSFS branch.

• LU-6245 : libcfs train wreck
– No more using libcfs.h as master kernel header
– Abstractions still left

• LU-6401 : lustre header train wreck
– User land and kernel header entanglement
– Use of internal kernel headers in user land

• Rework build system
– Build only lustre utilities and use upstream kernel headers

11

Conclusion

• Very successful year

• Work left for master
– Finish off libcfs syncing during 2.9 development cycle
– Lustre user land / kernel header cleanup
– Kernel code style updates will be big update

• Continue to bring upstream client up to date

• We can’t forget support for latest kernels

• Goal by next LUG is have sync all the upstream client code with OpenSFS branch

	Lustre + Linux
	Upstream client progress since last LUG
	Impact of a functional Upstream client
	Upstream coding style difference
	Upstream style versus OpenSFS style
	Upstream future work
	Syncing master with upstream client
	Master’s progress since last LUG
	Preparing master’s server code for upstream
	What needs to be done for OpenSFS/Intel branch?
	Conclusion

