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Lustre + Linux 

The tale of two trees
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Upstream client progress since last LUG
• From rage to acceptance

– Merged in 2013. Left to decay for two years.
– Almost deleted from upstream twice
– Now patches merged in a few days

• Massive checkpatch cleanups have been done

• Moved from procfs to sysfs

• Updated tools to allow testing of upstream client

• Merged some of the OpenSFS clean ups for libcfs

• Synced upstream LNet layer to current master
– Made LNet stand alone for Linux kernel
– Can use default Linux kernel 4.6+ for lustre routers
– Interest in moving LNet out of staging first.
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Impact of a functional Upstream client 
• Preparing automated testing of upstream client

– Working out test failures (LU-4011)
1) Don’t test latest functionality (LU-7746)
2) Skip real test fails for now

• Submitting patches for LNet/libcfs to upstream as well as OpenSFS/Intel branch
– Upstream one change rule. 

• Mostly impact new features
– Consider kernel coding style

• OpenSFS guide lines mostly the same.
• Run kernel-source/scripts/checkpatch yourpatch.diff
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Upstream coding style difference
• 80+ character line length more relaxed

– Readability more important
– Don’t break strings
– Headers style doesn’t matter?

• Hate of spacing. 
– No “int rc;”
– No “var = value1;”

• No generic naming, i.e goto failed2; …. failed2:

• No lots of returns in functions. Use goto instead.

• No return -1 or positive numbers

• Handle error handling not success handling

• http://wiki.lustre.org/Upstream_contributing
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Upstream style versus OpenSFS style
• Resistance to some kernel styles

– “if (rc != 0” or “if (rc == 0)”
– “if (ptr != NULL)” or “if (ptr == NULL”)
– “if ((a & b) == 0)” is bad style and should be changed

• Discuss at developers day
– Use all kernel style makes porting easy
– If not using all kernel style need script to push patches upstream
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Upstream future work
• Sync libcfs for OpenSFS/upstream

• Push lustre client code changes to upstream

• Move to standard debugging
– Tracepoint support
– Memory leak detection

• Enable kernel debugging options (kmemleaks)
• KEDR framework
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Syncing master with upstream client
• Participants:

– Oleg Drokin, John Hammond, and Dmitry Eremin from Intel
– Frank Zago, Ben Evans from Cray
– James Simmons from ORNL

• Goals:
– Remove technical debt (LU-7917)
– Meet kernel coding styles (LU-6142)
– Remove abstractions (LU-6245 / LU-6401)
– Support newer kernels (LU-6215)
– Back port fixes for bugs from upstream (LU-4423)



8

Master’s progress since last LUG
• Support up to 4.4.6 kernels (LU-6215)

• Tool support for upstream client (LU-5030)

• Kernel coding styles enforced (LU-6142)

• Flow of upstream fixes to master (LU-4423)

• Continue cleanup of lustre headers (LU-6401)

• Work on libcfs continues (LU-6245)
– libcfs module free of user land code
– libcfs headers are uapi compliant
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Preparing master’s server code for 
upstream
• All code cleanup for clients are applied to servers

• LU-20 : Goal of no more patching the server side
– Patching only needed for ldiskfs support
– LU-3406 : raid5 mmp unplug patch
– LU-684   : Use dm flakey to test fail over
– Drop the rest of the patches since they are upstream
– Only need to patch latest kernel with LU-3406 for testing. Hopefully proper upstream 

solution will be done

• LU-6220 : Push most ldiskfs patches upstream 

• LU-7311 : Server, ldiskfs support for 3.18 kernels

• LU-3953 : Working lustre packaging system
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What needs to be done for 
OpenSFS/Intel branch?

• Checkpatch audit

• Back port sysfs support to OpenSFS branch.

• LU-6245 : libcfs train wreck
– No more using libcfs.h as master kernel header
– Abstractions still left

• LU-6401 : lustre header train wreck
– User land and kernel header entanglement
– Use of internal kernel headers in user land

• Rework build system
– Build only lustre utilities and use upstream kernel headers
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Conclusion

• Very successful year

• Work left for master
– Finish off libcfs syncing during 2.9 development cycle
– Lustre user land / kernel header cleanup
– Kernel code style updates will be big update

• Continue to bring upstream client up to date

• We can’t forget support for latest kernels

• Goal by next LUG is have sync all the upstream client code with OpenSFS branch 
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