Rationalizing Message Logging for Lustre

John Hammond
ICES/TACC
The University of Texas at Austin

jhammond@ices.utexas.edu
Collaborators

• James C. Browne, U.T., ICES/CS
• Tommy Minyard, U.T., TACC
• Chris Jordan, U.T., TACC
• Kuo Shyh-Hao, IHPC, A*STAR
• Lee Kee Khoon, IHPC, A*STAR
Overview

• Goals
• Motivation
• Approach
• Requirements on Lustre
• Results and Status
• Future Work
• Solicitation
Goals

Enable effective diagnosis of fault/failure diagnosis and recovery for Lustre

- Make message log both readily parsable and easily human readable

- Enable fast and accurate on-line analysis of the health of a Lustre installation
Ranger - Hardware Summary

• Compute power - 579 Teraflops
 – 3,936 Sun four-socket blades
 – 15,744 AMD “Barcelona” quad-core processors
• Memory - 123 Terabytes
 – 2 GB/core, 32 GB/node
 – ~20 GB/sec memory B/W per node
• Disk subsystem - 1.7 Petabytes
 – 72 Sun x4500 “Thumper” I/O servers, 24TB each
 – 40 GB/sec total aggregate I/O bandwidth
 – 1 PB raw capacity in largest filesystem
• Interconnect - 1 GBps, 1.6–2.85 μsec latency
 – 2 Sun InfiniBand switches, up to 3456 4x ports each
 – Full non-blocking 7-stage Clos fabric
Ranger kernel logging

30K—2M msgs per day, 5K—200K Lustre

Only 5—10% saved to disk

New message type every few days.

Traditional approaches to system logging are not up to the task.
Non-Diagnostic Messages

- LustreError: 7424:0:
 (quota_master.c:514:mds_quota_adjust())
 mds adjust qunit failed! (opc:4 rc:-122)

- LustreError: 9247:0:
 (ldlm_lib.c:1643:target_send_reply_msg())
 @@@ processing error (-107)
 req@000001018ac30c00 x152525432/t0 o400-
 ><?>@<?>:0/0 lens 128/0 e 0 to 0 dl
 1267778275 ref 1 fl Interpret:H/0/0 rc
 -107/0
Obscure Messages

- Understanding Lustre (kernel, [insert FOSS project name],...) trace requires careful reading of source
Incomplete Messages

• Diagnosing causes of OSS hangs requires trace not currently recorded (when generated)

Call Trace:
<fffffffffa005097d>{:raid5:get_active_stripe+388}
<fffffffff801346fa>{__wake_up+54}
<fffffffff80134653>{default_wake_function+0}
<fffffffffa005291d>{:raid5:make_request+740}
<fffffffff8015a905>{find_get_page+65}
<fffffffff8017c00f>{__find_get_block_slow+62}
<fffffffff80255876>{generic_make_request+361}
<fffffffff8013602c>{autoremove_wake_function+0}
<fffffffff80255982>{submit_bio+247}
...

Redundant Messages
OST refuses reconnect request

... work-OST002c: 83ddb83f-ebeb-41f6-6059-84e4386954b0
reconnecting

... work-OST002c: refuse reconnection from 83ddb83f-
ebeb-41f6-6059-84e4386954b0@129.114.105.213@o2ib to
0x000001018f3d0000; still busy with 3 active RPCs

... @@@ processing error (-16) req@000001012732ec50
x32535133/t0 08->83ddb83f-ebeb-41f6-6059-
84e4386954b0@NET_0x50000817269d5_UUID:0/0 lens 304/200 e
0 to 0 dl 1257857619 ref 1 fl Interpret:/0/0 rc -16/0
Extracting data from messages

Source:
...
printk(KERN_ERR "device failed: Error %d: %s\n", errno, errmsg);
...

Message:

Mar 10 15:09:30 myhost kernel: device failed: Error 150: Not a toaster

Monitor:

msg = get_next_syslog_msg();
/* Extract message date, hostname, program... */

/* Try to match "device failed: ..." and recover arguments. */
if (sscanf(msg, "device failed: Error %d: %[^\n]\n", &err, buf) == 2) {
 /* Handle message. */
 /* ... */
}
int main (...)
{
 char *s1, *s2;
 /* ... */

 printf("%s%s", s1, s2);
}

Assume the output is "1234", then find s1 and s2.
Real examples

Jan 19 16:58:45 i110-301 kernel: LustreError: 5647:0: (events.c:66:request_out_callback()) @@ type 4, status -5 req@ffff81060142b000 x70401815/t0 o8-work-OST003c_UUID@129.114.97.37@o2ib:28/4 lens 304/456 e 0 to 1 dl 1263941647 ref 1 fl Complete:EXN/0/0 rc -110/0

Jan 26 21:26:12 mds3 kernel: LustreError: 0:0: (ldlm_lockd.c:305:waiting_locks_callback()) ### lock callback timer expired after 50s: evicting client at 129.114.105.107@o2ib ns: mds-scratch-MDT0000_UUID lock: 000001016ace8940/0xf9157c8032284b99 lrc: 3/0,0 mode: CR/CR res: 269333475/1604567023 bits 0x3 rrc: 2 type: IBT flags: 0x4000020 remote: 0x2312e9da3f6a73c3 expref: 55 pid: 13656 timeout: 4479804771
System Log Rationalization

• Make message content parsable and human readable

• Rationalize message priorities, delete redundant messages

• Create multiple streams for different purposes
 – Fault/failure diagnosis
 – State machine synthesis
 – Resource/performance management
Approach

• Rationalize message handling by Linux syslog stack
 – Message formatting
 – Partition message stream

• Rationalize Lustre message stream
 – Uniform message structure
 – Revise message priorities to ensure critical messages are delivered
Rational encoding

Modify printk() by inserting call to a new function, rat_printk().

Every call to printk(),

```
printk(KERN_ERR "device failed: Error %d: %s\n", errno, errmsg);
```

would produce the normal message:

```
Mar 10 15:09:30 myhost kernel: device failed: Error 157: Not a toaster
```

along with a rationalized version of the same:

```
time:1268255370
host:myhost
progname:kernel
0:<3>Print failed: Error %d: %s
1:157
2:Not a toaster
```
Rationalized encoding stack

```
kernel

printk()  --->  rat_printk()

log_buf[]  --->  rat_log_buf[]

do_syslog()  --->  /proc/kmsg

/proc/rat_kmsg

rat_syslog()

dev/log

Dev/rat_log

rat_syslogd

remotehost

monitors
```
Rationalization Workflow
Requirements on Lustre

• Modification message formatting macros to take advantage of rationalized printk()

 Won't break interfaces!

• Participation in message rationalization workflow

 Also, won't break interfaces!
Solicitation

• This project will make Lustre a more effective and usable system

• We solicit collaboration with:
 – The Lustre Development group
 – Any Lustre users who would like to participate in this project