
Using Lustre with Apache Hadoop

Table of Contents

Overview and Issues with Hadoop+HDFS...2

MapReduce and Hadoop overview...2

Challenges of Hadoop + HDFS..4

Some useful suggestions..5

Hadoop over Lustre..5

File Systems for Hadoop...6

When Hadoop uses a file system...6

Three Kinds of Typical I/O for Hadoop+HDFS..6

Differences at each stage between HDFS and Lustre..9

Difference Summary Table..10

Running Hadoop Jobs over Lustre..12

How to run a MapReduce job with Lustre...12

Adding Lustre block location information..12

Input/Output Formats..14

Format Inheritance UML...14

SequenceFileInputFormat/SequenceFileOutputFormat..15

Test Cases and Test Results...18

Test environment..18

Application Tests...18

Sub phases tests..21

Benchmark I/O tests...23

References and Glossary..25

Sun Microsystems Inc. 1

Overview and Issues with Hadoop+HDFS

In this section, we provide a brief overview of MapReduce and Hadoop and then show

some shortcomings of Hadoop+HDFS[1]. First, we provide a general overview of

MapReduce, explain what it is, what it achieves, and how it works. Second, we introduce

Hadoop as an implementation of MapReduce, show a general overview of Hadoop and

Hadoop Distributed File System (HDFS), and explain how it works and what the tasks-

assigned strategy is. Third, we list a few major flaws and drawbacks of using

Hadoop+HDFS as a platform. These flaws are the reason we have done this research

and study.

MapReduce and Hadoop overview

MapReduce[2] is a programming model (Figure 1) and an associated implementation for

processing and generating large data sets. Users specify a map function that processes

a key/value pair to generate a set of intermediate key/value pairs, and a reduce function

that merges all intermediate values associated with the same intermediate key.

MapReduce provides automatic parallelization and distribution, fault-tolerance, I/O

scheduling, status and monitoring.

Figure 1: MapReduce Parallel Execution

Hadoop[3] implements MapReduce, using HDFS for storage. MapReduce divides

applications into many small blocks of work. HDFS creates multiple replicas of data

blocks for reliability, placing them on compute nodes around the cluster. MapReduce can

then process the data where it is located.

Hadoop execution engine is divided into three main modules (Figure 2): JobTracker[4],

TaskTracker[5] and Applications.

2 Sun Microsystems Inc.

TaskTracker

Linux file system

JobTrackerApplication
Launcher

File System

（HDFS/Lustre）

Submit job

Distribute taskSave jars

...
Input data

Report status

Output

Localize jar

Figure 2: Hadoop Execution Engine

As the graph shows, Application Launcher submits a job to JobTracker and saves jars of

the job in the file system. JobTracker divides the job into several map and reduce tasks.

Then JobTracker schedules tasks to TaskTracker for execution. TaskTracker fetches task

jar from the file system and saves the data into the local file system. The Hadoop system

is based on centralization schedule mechanism. JobTracker is the information center, in

charge of all jobs’ execution status and make schedule decision. TaskTracker will be run

on every node and in charge of managing the status of all tasks which running on that

node. And each node may run many tasks of many jobs.

Applications typically implement the Mapper[6] and Reducer[7] interfaces to provide the

map and reduce methods. Mapper maps input key/value pairs to a set of intermediate

key/value pairs. Reducer reduces a set of intermediate values which share a key to a

smaller set of values. And Reducer has 3 primary phases: shuffle, sort and reduce.

Shuffle: Input to the Reducer is the sorted output of the mappers. In this phase, the

framework fetches the relevant partition of the output of all the mappers via

HTTP.

Sort: The framework groups Reducer inputs by keys (since different mappers may

have the same key as output) in this stage.

Reduce: In this phase the reduce() method is called for each <key, (list of values)> pair in

the grouped inputs.

According to Hadoop tasks-assigned strategy, it is TaskTracker’s duty to ask tasks to

execute, rather than JobTacker assign tasks to TaskTrackers. Actually, Hadoop will

maintain a topology map of all nodes in cluster organized as Figure 3. When a job was

submitted to the system, a thread will pre-assign a task to a node in the topology map.

After that, when TaskTracker sends a task request heartbeat to JobTracker, JobTracker

will select the fittest task according to the former pre-assign.

Sun Microsystems Inc. 3

As a platform, Hadoop provides services, the ideal situation is that it uses resources

(CPU, memory, etc) as little as possible, leaving resources for applications. We sum up

two kinds of typical applications or tests which must deal with huge inputs:

• General statistic applications (such as WordCount[8])

• Computational complexity applications (such as BigMapOutput[9], webpages

analytics processing)

For the first one, general statistics applications with small MapTask outputs (intermediate

results), Hadoop works well. However, for the second one, high computational complexity

applications, which generate large even increasing outputs, Hadoop shows lots of

bottlenecks and problems. First, write/read big MapTask outputs in the local Linux file

system will result in an OS or disk I/O bottleneck; Second, in the shuffle stage, the

Reducer node needs to use HTTP to fetch the relevant partition of the big outputs of all

the MapTask before the reduce phase begins.This will generate lots of net I/O and

merge/spill[10] operations and also take up mass resources. Even worse, the bursting

shuffle stage will exhaust memory and result in kernel kill of some key threads (such as

SSH) according to Java’s wasteful memory usage. This makes the cluster unbalanced

and unstable. Third, HDFS is time consuming for storing small files.

Challenges of Hadoop + HDFS

1. According to the tasks-assigned strategy, Hadoop cannot make task is data local

absolutely. For example when node1 (rack 2) requests a task, but all tasks pre-

assign to this node has finished, then JobTracker will give node1 a task pre-

assigned to other nodes in rack 2. In this situation, node1 will run a few tasks whose

data is not local. This break sthe Hadoop principle: “Moving Computation is Cheaper

than Moving Data”. This generates a huge net I/O when these kinds of tasks have

huge inputs.

Central

Rack 1

Node1 Node n
…

...

Rack 2

Node1 Node n
…

Rack n

Node1 Node n
…

Figure 3: Topology Map of All Cluster Nodes

2. Hadoop+HDFS storage strategy of temp/intermediate data is not good for high

computational complexity applications (such as web analytics processing), which

generate big and increasing MapTask outputs. Save big MapTask outputs in local

Linux file system will get OS/disk I/O bottleneck. These I/O should be disperse and

parallel but Hadoop doesn’t.

4 Sun Microsystems Inc.

3. Reduce node need to use HTTP to shuffle all related big MapTask outputs before

real task begins, which will generate lots of net I/O and merge/spill[2] operation and

also take up mass resources. Even worse, the bursting shuffle stage will make

memory exhausted and make kernel kill some key threads (such as SSH) according

to java’s wasteful memory usage, this will make the cluster unbalance and instable.

4. HDFS can not be used as a normal file system, which makes it difficult to extend.

5. HDFS is time consuming for little files.

Some useful suggestions

 Distribute MapTask intermediate results to multiple local disks. This can lighten disk

I/O obstruction;

 Disperse MapTask intermediate results to multiple nodes (on Lustre). This can

lessen stress of the MapTask nodes;

 Delay actual net I/O transmission time, rather than transmitting all intermediate

results at the beginning of ReduceTask (shuffle phase). This can disperse the

network usage in time scale.

Hadoop over Lustre

Using Lustre instead of HDFS as the backend file system for Hadoop is one of the

solutions of the above challenges. First of all, Each Hadoop MapTask can read parallelly

when inputs are not locally; In the second place, saving big intermediate outputs in

Lustre, which can be dispersed and parallel, will lessen mapper nodes’ OS and disk I/O

traffic; In the third place, Lustre creates a hardlink in the shuffle stage for the reducer

node, which is delay actual network transmission time and more effective. Finally, Lustre

can be mounted as a normal POSIX file system and is more efficient for reading/writing

small files.

Sun Microsystems Inc. 5

File Systems for Hadoop

In this section, we first talk about when and how Hadoop use file system, then we sum up

three kinds of typical Hadoop I/O, and explain the generated scenes of them. After that

we bring up the differences of each stage between Lustre and HDFS, and give a general

difference summary table.

When Hadoop uses a file system

Hadoop uses two kinds of file systems：HDFS, Local Linux file system. Next, we make a

list of use context of above two file systems.

 HDFS:

 Write/Read job’s inputs;

 Write/Read job’s outputs;

 Write/Read job’s configurations and necessary jars/dlls.

 Local Linux file system:

 Write/Read MapTask outputs (intermediate results);

 Write/Read ReduceTask inputs (reducer fetch mapper intermediate results);

 Write/Read all temporary files (produced by merge/spill operations).

Three Kinds of Typical I/O for Hadoop+HDFS

As the figure 4 shows, there are three kinds of typical I/O: “HDFS bytes read”, “HDFS

bytes write”, “local bytes write/read”.

6 Sun Microsystems Inc.

 Node a

 Node 1

Map phase begins

HDFS read (almost locally)

Reduce phase begins

HDFS Write

MapTask 1

InputSplit1

Map phase ends

HTTP

ReduceTask a

Map output (intermediate)

Result a

Reduce phase ends

……

……

……

local linux file system

Submit a Job

Split the Job into MapTask {1, 2, ... n}, ReduceTask {1,...m}

 Node 2

HDFS read

MapTask 2

InputSplit 2

Map output

local linux file system

 Node n

HDFS read

MapTask n

InputSplit n

Map output

local linux file system

HDFS bytes read: HDFS

Shuffle phase (HTTP)
 Node b

HDFS Write

ReduceTask b

Result b

Shuffle phase (HTTP)
 Node m

HDFS Write

ReduceTask m

Result m

Shuffle phase (HTTP)

local linux file system local linux file system local linux file system

HDFS bytes write: HDFS

Figure 4: Hadoop+HDFS I/O Flow

1. “HDFS bytes read” (MapTask inputs)

When mapper begins, each MapTask reads blocks from HDFS which are mostly locally

because of the block’s location information.

2. “HDFS bytes write” (ReduceTask ouputs)

At the end of reduce phase, all the results of the MapReduce job will be written to HDFS.

3. “local bytes write/read” (Intermediate inputs/outputs)

All the temporary and intermediate I/O was produced in local Linux file system, mostly

happens at the end of the mapper, and at the beginning of the reducer.

 “local bytes write” scenes

a) During MapTask’s phase, map’s output was firstly written to Buffers, the

size and threshold of the Buffers can be configured. When the Buffer size

reach the threshold the Spill operation will be triggered. Each Spill

operation will generate a temp file “Spill*.out” on disk. And if the map’s

output was extremely big, it will generate many Spill*.out files, all I/O are

“local bytes write”.

b) After MapTask’s Spill operation, all the map results are written to disk, the

Merge operation begins to combine small spill*.out files to a bigger

intermediate.* file. According to Hadoop’s algorithm, Merge will be

circulating executed until the files’ number is less than the configured

Sun Microsystems Inc. 7

threshold. During this action it will generate some “local bytes write” when

write bigger intermediate.* to disk.

c) After Merge operation, each map has limited(less than configured

threshold) files, including some spill*.out and some intermediate.* files.

Hadoop will combine these files to a single file “file.out”, each map results

only one ouput file “file.out”. During this action it will generate some “local

bytes write” when write “file.out” to disk.

d) At the beginning of Reduce phase, a shuffle phase is to copy needed map

outputs from map nodes. The copy use HTTP. If the shuffle files’s size

reach the threshold some files will be written to disk which will generate

“local bytes write”.

e) During reduce-task’s shuffle phase, Hadoop will start 2 Merge threads:

InMemFSMergeThread and LocalFSMerger. The first one detects the in-

memory files number. The second one detects the disk files number, it will

be trigged when the disk file number reach threshold to merge small files.

LocalFSMerger could generate “local bytes write”.

f) After reduce-task’s shuffle phase, Hadoop has many copied map results,

some in memory and some on disk. Hadoop will merge these small files to

a limited (less than threshold) bigger intermediate.* files. The merge

operation will generate “local bytes write” when write merged big

intermediate.* files to disk.

 “local bytes read” scenes

a) During MapTask’s Merge operation, Hadoop merge small spill*.out files to

limited bigger intermediate.* files. During this action it will generate some

“local bytes read” when read small spill*.out files from disk.

b) After MapTask’s Merge operation, each map has limited(less than

configured threshold) files, some Spill*.out and some intermediate.* files.

Hadoop will combine these files to a single file “file.out”. During this action it

will generate some “local bytes read” when read spill*.out and

intermediate.* files from disk.

c) During reduce-task’s shuffle phase, LocalFSMerger will generate some

“local bytes read” when read small files from disk.

d) During reduce-task’s phase, all the copied files will read from disk to

generate the reduce-task’s input. It will generate some “local bytes read”.

8 Sun Microsystems Inc.

Differences at each stage between HDFS and Lustre

In this section, we divide Hadoop into 4 stages: mapper input, mapper output, reducer

input, reducer output. And we compare the differences of HDFS and Lustre in each

stage.

1. Map input: read/write

1) With block’s location information

 HDFS: streaming read in each task, most locally, rare remotely network I/O.

 Lustre: read in parallel in each task from Lustre client.

2) Without block’s location information

 HDFS: streaming read in each task, most locally, rare remotely network I/O.

 Lustre: reads in parallel each task from Lustre client, less network I/O than

the first one because of location information.

Add block’s location information will let tasks read/write locally instead of remotely as far

as possible. And “add block location information” is for both minimizing the network

traffic, and raising read/write speed

2. Map output: read/write

 HDFS: writes on local Linux file system, not HDFS, showing in Figure 4.

 Lustre: writes on Lustre

A record emitted from a map will be serialized into a buffer and metadata will be stored

into accounting buffers. When either the serialization buffer or the metadata exceed a

threshold, the contents of the buffers will be sorted and written to disk in the background

while the map continues to output records. If either buffer fills completely while the spill is

in progress, the map thread will block. When the map is finished, any remaining records

are written to disk and all on-disk segments are merged into a single file. Minimizing the

number of spills to disk can decrease map time, but a larger buffer also decreases the

memory available to the mapper. Hadoop merge/spill strategy is simple. We think it can

be changed to adapt Lustre.

Disperse MapTask intermediate outputs to multiple nodes (on Lustre) can lessen I/O

stress of MapTask nodes.

3. Reduce input: shuffle phase read/write

 HDFS: Uses HTTP to fetch map output from remote mapper nodes

 Lustre: Build a hardlink of the map output.

Sun Microsystems Inc. 9

Each reducer fetches the outputs assigned via HTTP into memory and periodically

merges these outputs to disk. If intermediate compression of map outputs is turned on,

each output is decompressed into memory.

Lustre will delay actual network transmission time (shuffle phase), rather than shuffling all

needed map intermediate results at the beginning of ReduceTask. Lustre can disperse

the network usage in time scale.

4. Reduce output: write

 HDFS: ReduceTask write results to HDFS, each reducer is serial.

 Lustre: ReduceTask write results to Lustre, each reducer can be parallel.

Difference Summary Table

Lustre HDFS

Host Language C Java

POSIX compliance Support Not strictly support

Heterogeneous network Support Not support, only TCP/IP.

Hard/soft Links Support Not support

User/ group quotas Support Not support

Access control list (ACL) Support Not support

Coherency Model Write once read many

Record append Support Not support

Replication Not support Support

Lustre：

1. Lustre does not support Replication.

2. Lustre file system interface fully compliant in accordance with the POSIX standard

3. Lustre support appending-writes to files.

4. Lustre support user quotas or access permissions.

5. Lustre support hard links or soft links.

6. Lustre support Heterogeneous networks, including TCP/IP, Quadrics Elan, many

flavors of InfiniBand, and Myrinet GM.

HDFS：

1. HDFS hold stripe replica maintain data integrity. Even if a server fails, no data is lost.

2. HDFS prefers streaming read, not random read.

3. HDFS supports cluster re-balance.

4. HDFS relaxes a few POSIX requirements to enable streaming access to file system

data.

10 Sun Microsystems Inc.

5. HDFS applications need a write-once-read-many access model for files

6. HDFS does not support appending-writes to files.

7. HDFS does not yet implement user quotas or access permissions.

8. HDFS does not support hard links or soft links.

9. HDFS does not support Heterogeneous networks, only support TCP/IP network.

Sun Microsystems Inc. 11

Running Hadoop Jobs over Lustre

In this section, we give a workable plan for running Hadoop jobs over Lustre. After that,

we try to make some improvements for performance, such as: Add block location

information for Lustre, Use hardlink[11] in shuffle stage and etc. In the next section, we

compare the performance of these improvements by tests.

How to run a MapReduce job with Lustre

Besides HDFS, Hadoop can support some other kinds of file system such as KFS[12],

S3[13]. These file systems provided a Java interface which can be used by Hadoop. So

Hadoop uses them easily.

Lustre has no JAVA wrapper, it can’t adopt like the above file system. Fortunately, Lustre

provides a POSIX-compliant UNIX file system interface. We can use Lustre as local file

system at each node.

To run Hadoop over Lustre file system, first of all Lustre should installed on every node in

the cluster and mounted at the same path such as /Lustre. Modify the configuration which

Hadoop used to build the file system. Give the path where Lustre was mounted to the

variable ‘fs.default.name’. And ‘mapred.local.dir’ should be set to an independent

directory. When running job, just start JobTracker and TaskTracker. In this means,

Hadoop will use Lustre file system to store all information.

Details of what we have done:

1. Mount Lustre at /Lustre on each node;

2. Build a Hadoop-site.xml[14] configuration file and set some variables;

3. Start JobTracker and TaskTracker;

4. Now we can run MapRedcue jobs over Lustre.

Adding Lustre block location information

As mentioned earlier, “add block location information” is for both minimizing the network

traffic, and raising read/write speed. HDFS maintains the block location information,

which makes most of Hadoop MapTasks can be assigned to the node where it can

read/write locally. Surely, reading from local disk has a better performance than reading

remotely when the cluster network is busy or slow. In this situation, HDFS can reduce the

network traffic and short map phase. Even if the cluster has excellent network, let map

task reading locally can reduce network traffic significantly.

12 Sun Microsystems Inc.

To improve the performance of Hadoop using Lustre as a storage backend, we have to

help JobTracker access the data location of each split. Lustre provides some user

utilities to gather the extended attributes of a specific file. Because the Hadoop default

block size is 32M, we set the Lustre stripe size to 32M. This will make that each map task

input is on a single node.

We create a file containing the map from OST->hostname. This can be done with “lctl dl”

command at each node. Another way, we add a new JAVA class to Hadoop source code

and rebuild it to get a new jar. Through the new class we can get location information of

each file stored in Lustre. The location information is saved in an array. When JobTracker

pre-assign map tasks, these information helps Hadoop to give map task to the

node(OSS) where it can read input from local disk.

Details of each step of adding block location info:

First, figure out task node’s hostname from OST number (lfs getstripe) and save as a

configuration file.

For example:

Lustre‐OST0000_UUID=oss2

Lustre‐OST0001_UUID=oss3

Lustre‐OST0002_UUID=oss1

Second, get location information of each file using function in Jshell.java. The location

information will save in an array.

Third, modify FileSystem.java. Before modify getFileBlockLocations in FileSystem.java

simply return an elt containing 'localhost'.

Four, we will attach location information to each block (stripe).

Differences in BlockLocation[] (FileSystem. getFileBlockLocations()) before and after:

hosts names offset length

Before Modify localhost localhost:50010 offset in file length of block

After Modify hostname hostname:50010 offset in file length of block

Sun Microsystems Inc. 13

Input/Output Formats

There are many input/output formats in Hadoop, such as:

SequenceFile(Input/Output)Format, Text(Input/Output)Format, DB(Input/Output)Format,

etc. We can also implement our own file format by implementing

InputFormat/OutputFormat interfaces. In this section, we firstly what typical input/output

formats are and how they worked. At last, we explain the SequenceFile format in detail to

bring a more clearly understanding.

Format Inheritance UML

Figures 5 and 6 show the Inheritance UML of Hadoop format.

 InputFormat logically split the set of input files for the job. The Map-Reduce

framework relies on the InputFormat of the job to:

1. Validate the input-specification of the job.

2. getSplits(): Split-up the input file(s) into logical InputSplits, each of which is then

assigned to an individual Mapper.

3. getRecordReader(): Provide the RecordReader implementation to be used to

glean input records from the logical InputSplit for processing by the Mapper.

 OutputFormat describes the output-specification for a Map-Reduce job. The Map-

Reduce framework relies on the OutputFormat of the job to:

1. checkOutputSpecs(): Validate the output-specification of the job. For e.g. check

that the output directory doesn't already exist.

2. getRecordWriter(): Provide the RecordWriter implementation to be used to write

out the output files of the job. Output files are stored in a FileSystem.

14 Sun Microsystems Inc.

FileInputFormat

SequenceFileInputFormat

DBOutputFormat

TextInputFormat MultiFileInputFormat NLineInputFormat

+getSplits()
+getRecordReader()

<<接口>>
InputFormat

Figure 5: InputFormat Inheritance UML

FileOutputFormat

SequenceFileOutputFormat

DBOutputFormat

TextOutputFormat MultipleOutputFormat

+getRecordWriter()
+checkOutputSpecs()

<<接口>>
OutputFormat

Figure 6: OutputFormat Inheritance UML

SequenceFileInputFormat/SequenceFileOutputFormat

This is an InputFormat/OutputFormat SequenceFiles. This format is used in

BigMapOutput test.

SequenceFileInputFormat

 getSplits(): splits files by file size and user configuration, and Splits files returned by

#listStatus(JobConf) when they're too big.

 getRecordReader(): return SequenceFileRecordReader, a decoration of

SequenceFile.Reader, which can seek to the needed record(key/value pair), read

the record one by one.

Sun Microsystems Inc. 15

SequenceFileOutputFormat

 checkOutputSpecs(): Validate the output-specification of the job.

 getRecordWriter(): return RecordReader, a decoration of SequenceFile.Writer,

which use append() to write record one by one.

SequenceFile physical format

SequenceFiles are flat files consisting of binary key/value pairs. SequenceFile provides

Writer, Reader and Sorter classes for writing, reading and sorting respectively.

There are three SequenceFile Writers based on the CompressionType used to compress

key/value pairs:

1. Writer: Uncompressed records.

2. RecordCompressWriter: Record-compressed files, only compress values.

3. BlockCompressWriter: Block-compressed files, both keys & values are

collected in 'blocks' separately and compressed. The size of the 'block' is

configurable.

The actual compression algorithm used to compress key and/or values can be specified

by using the appropriate CompressionCodec. The recommended way is to use the static

createWriter methods provided by the SequenceFile to choose the preferred format. The

Reader acts as the bridge and can read any of the above SequenceFile formats.

Essentially there are 3 different formats for SequenceFiles depending on the

CompressionType specified. All of them share a common header described below.

SequenceFile Header

• version - 3 bytes of magic header SEQ, followed by 1 byte of actual version

number (e.g. SEQ4 or SEQ6)

• keyClassName -key class

• valueClassName - value class

• compression - A boolean which specifies if compression is turned on for

keys/values in this file.

• blockCompression - A boolean which specifies if block-compression is turned on

for keys/values in this file.

• compression codec - CompressionCodec class which is used for compression of

keys and/or values (if compression is enabled).

• metadata - Metadata for this file.

• sync - A sync marker to denote end of the header.

16 Sun Microsystems Inc.

Uncompressed SequenceFile Format

• Header

• Record

 Record length

 Key length

 Key

 Value

• A sync-marker every few 100 bytes or so.

Record-Compressed SequenceFile Format

• Header

• Record

 Record length

 Key length

 Key

 Compressed Value

• A sync-marker every few 100 bytes or so.

Block-Compressed SequenceFile Format

• Header

• Record Block

 Compressed key-lengths block-size

 Compressed key-lengths block

 Compressed keys block-size

 Compressed keys block

 Compressed value-lengths block-size

 Compressed value-lengths block

 Compressed values block-size

 Compressed values block

• A sync-marker every few 100 bytes or so.

The compressed blocks of key lengths and value lengths consist of the actual lengths of

individual keys/values encoded in ZeroCompressedInteger format.

Sun Microsystems Inc. 17

Test Cases and Test Results

In this section, we introduce our test environment, and then we’ll describe three kinds of

tests: Application test, sub phases test, and benchmark I/O test.

Test environment

Neissie：

Our experiments run on cluster with 8 nodes in total, one is mds/namenode, the rest are

OSS/DataNode. Every node has the same hardware configuration with two 2.2 GHz

processors, 8G of memory, and Gigabit Ethernet.

Application Tests

There are two kinds of typical applications or tests which must deal with huge inputs:

General statistic applications (such as: WordCount), Computational complexity

applications (such as: BigMapOutput[9], webpages analytics processing).

 WordCount:

 This is a typical test case in Hadoop. It reads input files which must be text files and then

count how often each words occur. The output is also text files, each line of which

contains a word and the count of times it occurred, separated by a tab.

Why we need this: As we described before, for some applications which have small

MapOutput , MapReduce+HDFS woks well. And the WordCount can represent this kind

of applications, it may have big input files, but either the MapOutput files or reduce output

files is small, and just do some statistics work. Through this test we can see the

performance gap between Lustre and HDFS for statistics applications.

 BigMapOutput:

It is a map/reduce program that works on a very big non-splittable file , for map or reduce

tasks it just read the input file and the do nothing but output the same file.

Why we need this: WordCount represents some applications which have small output

file, but BigMapOutput is just the opposite. This test case generates big output, and as

mentioned previous when running this kind of applications, MapReduce+HDFS will have

a lot of disadvantages. Through this test we should see Lustre has better performance

than HDFS, especially after the changes we had made to Hadoop, that is to say Lustre is

more effective than HDFS for this kind of applications.

18 Sun Microsystems Inc.

Test1: WordCount with a big file

In this test, we choose the WordCount example(details as before), and process one big

text file(6G). Set the blocksize=32m(actually all the tests have the same blocksize), so

we would get about 200 Map tasks in all, and base on the mapred tutorial’s suggestion,

we set the Reduce Tasks=0.95*2*7=13.

To get better performance we have tried several Lustre client’s configuration(details as

follows).

It should be noted that we didn’t make any changes to this test.

Result:

Item HDFS Lustre Lustre Lustre

Configuration default All directory

Stripesize=1M

Stripecount=7

Input directory

Stripesize=32M

Stripecount=7

Other directories

Stripesize=1M

Stripecount=7

Input directory

Stripesize=32M

Stripecount=7

Other directories

Stripesize=1M

Stripecount=1

Time (s) 303 325 330 318

Test2:WordCount with many small files

In this test, we choose the WordCount example(details as before), and process a large

number small files(10000). we set the Reduce Tasks=0.95*2*7=13.

It should be noted that we didn’t make any changes to this test.

Result:

Item HDFS Lustre

Configuration default Stripesize=1M

Stripecount=1

Stripeindex=‐1

Time 1h19m16s 1h21m8s

Sun Microsystems Inc. 19

Test3: BigMapOutput with one big file

In this test, the BigMapOutput process a big Sequence File (this kind of file format is

defined in Hadoop, the size is 6G).

It should be noted that we had made some changes to this test to compare HDFS with

Lustre. We will describe these changes in detail in the follow.

Result1:

In this test, we changed the input file format so the job can launch may Map tasks(every

Map task process about 32m data,and the default situation is that just one Map task

process the whole input file),and launch 13 Reduce Tasks. otherwise the mapred.local.dir

is set on Lustre (the default value is /tmp/Hadoop-${user.name}/mapred/local, in other

words it is on the local file system).

Item HDFS Lustre stripesize=1M
stripecount=7

Time (s) 164 392

Result2:

Because every node in the cluster has large memory size, so there are many operations

finished in the memory. So in this test, we made just one change to force some data must

be spilled to the disk, of course that means more pressure to the file system.

Item HDFS Lustre stripesize=1M
stripecount=7

Time (s) 207 446

Result3:

From the results as before, we find that HDFS’s performance much higher than Lustre’s,

which was unexpected. We thought the reason was os cache. To prove it we set the

mapred.local.dir to default value same as HDFS, and the result show the guess is right.

Item HDFS Lustre stripesize=1M
stripecount=7

Time (s) 207 207

20 Sun Microsystems Inc.

Sub phases tests

As we discussed, Hadoop has 3 stages I/O: mapper input, copy mapper output to

reducer input, reducer output. In this section, we make tests in these sub phases to find

the actually time-consuming phase in each specific application.

Test4: BigMapOutput with hardlink

In this test, we still choose BigMapOutput example, but the difference is that in copy

map_output phase, we create a hardlink to the map_output file to avoid copying output

file from one node to another on Lustre, after this change we can expect better

performance about Lustre with hardlink way.

Result:

Item Lustre Lustre with hardlink

Time (s) 446 391

Lustre: stripesize=1M, stripecount=7

Test5: BigMapOutput with hardlink and location information

In this test, we export the data location information on Lustre to mapred tasks through

changing the Hadoop code and create a hardlink in copy map_output phase. But in our

test environment, the performance has no significant difference between local read and

remote read, because of the high write speed.

Result:

Item Lustre with hardlink Lustre with hardlink location
info

Time (s) 391 366

Test6: BigMapOutput Map_Read phase

In this test, we let the Map tasks just read input file but do nothing, so we can see

the difference of read performance more clearly.

Results:

Item HDFS Lustre Lustre location info

Time (s) 66 111 106

Lustre: stripesize=32M, stripecount=7

In order to find out why HDFS get a better performance, we tried to analyst the log files.

We have scanned all map task logs, and find out cost time of reading input of each task.

Sun Microsystems Inc. 21

Test7: BigMapOutput copy_MapOutput phase

In this test, we will compare shuffle phase(copy MapOutput phase) between Lustre with

hardlink and Lustre without hardlink, and this time we set the Reduce Task num to 1, so

we can see the difference clearly.

Result:

Item Lustre with hardlink Lustre

Time (s) 228 287

Lustre: stripesize=1M, stripecount=7

Test8: BigMapOutput Reduce output phase

In this test, we just compare the Reduce output phase, and we set the Reduce Task num

to 1 the same as above.

Result:

Item HDFS Lustre

Time (s) 336 197

Lustre: stripesize=1m, stripecount=7

22 Sun Microsystems Inc.

Benchmark I/O tests

1. IOR tests

 IOR on HDFS

Setup: 1namenode 2datanode

Note:

1. We have used “-Y” to perform fsync after each POSIX write.

2. We also separate the write and read tests.

 IOR on Lustre

Setup: 1mds 2oss 2ost per OSS.

Note:

We have a dir named 2stripe whose stripe count is 2 and stripe size is 1M.

2. Iozone

 Iozone on HDFS

Setup: 1namenode 2datanode

Note:

1. 16M is the biggest record size in our system (which should less than the maximum

buffer size in our system).

2. We have used “-U” to unmount and mount between tests, this guarantees that the

buffer cache doesn't contain the file under test.

3. We also have used “-p” to purge the processor cache before every test.

Sun Microsystems Inc. 23

4. We have tested the write and read performance separately to ensure that the result

will not be affected by the client cache.

 Iozone on Lustre

Setup 1: 1mds 1oss 2ost

stripe count=2 stripe size=1M

Setup 2: 1mds 2oss 4ost

stripe count=4 stripe size=1M

Setup 3: 1mds 2oss 6ost

stripe count=6 stripe size= 1M

24 Sun Microsystems Inc.

References and Glossary

[1] HDFS is the primary distributed storage used by Hadoop applications. A HDFS

cluster primarily consists of a NameNode that manages the file system metadata

and DataNodes that store the actual data. The HDFS Architecture describes HDFS

in detail.

[2] MapReduce: http://labs.google.com/papers/mapreduce-osdi04.pdf

[3] Hadoop: http://Hadoop.apache.org/core/docs/r0.20.0/mapred_tutorial.html

[4] JobTracker :http://wiki.apache.org/Hadoop/JobTracker

[5] TaskTracker :http://wiki.apache.org/Hadoop/TaskTracker

[6] A interface that provides Hadoop Map() function, also refer MapTask node;

[7] A interface that provides Hadoop Reduce() function, also refer ReduceTask node;

[8] WordCount: A simple application that counts the number of occurrences of each

word in a given input set.

http://Hadoop.apache.org/core/docs/r0.20.0/mapred_tutorial.html#Example

%3A+WordCount+v2.0

[9] BigMapOutput: A Hadoop MapReduce test whose intermediate results are huge.

[10] https://svn.apache.org/repos/asf/ Hadoop/core/branches/branch-

0.15/src/test/org/apache/Hadoop/mapred/BigMapOutput.java

[11] merge/spill operations: A record emitted from a map will be serialized into a buffer

and metadata will be stored into accounting buffers. When either the serialization

buffer or the metadata exceed a threshold, the contents of the buffers will be sorted

and written to disk in the background while the map continues to output records. If

either buffer fills completely while the spill is in progress, the map thread will block.

When the map is finished, any remaining records are written to disk and all on-disk

segments are merged into a single file. Minimizing the number of spills to disk can

decrease map time, but a larger buffer also decreases the memory available to the

mapper. Each reducer fetches the output assigned via HTTP into memory and

periodically merges these outputs to disk. If intermediate compression of map

outputs is turned on, each output is decompressed into memory.

[12] Kosmos File System: http://kosmosfs.sourceforge.net/

[13] Amazon S3 is storage for the Internet. It is designed to make web-scale computing

easier for developers. : http://aws.amazon.com/s3/

[14] Lustre’s Hadoop-site.xml is in attachment file.

Sun Microsystems Inc. 25

	Overview and Issues with Hadoop+HDFS
	File Systems for Hadoop
	Running Hadoop Jobs over Lustre
	Input/Output Formats
	Test Cases and Test Results
	References and Glossary

