
<Insert Picture Here>

ZFS Features & Concepts TOI
Andreas Dilger
Lustre Technical Lead

ZFS Design Principles

Pooled storage
• Completely eliminates the antique notion of volumes
• Does for storage what VM did for memory

End-to-end data integrity
• Historically considered “too expensive”
• Turns out, no it isn't
• And the alternative is unacceptable

Transactional operation
• Keeps things always consistent on disk
• Removes almost all constraints on I/O order
• Allows us to get huge performance wins

FS/Volume Model vs. ZFS

Traditional Volumes
Abstraction: virtual disk

Partition/volume for each FS

Grow/shrink by hand

Each FS has limited bandwidth

Storage is fragmented, stranded

ZFS Pooled Storage
Abstraction: malloc/free

No partitions to manage

Grow/shrink automatically

All bandwidth always available

All storage in the pool is shared

Storage PoolVolume

FS

Volume

FS

Volume

FS ZFS ZFS ZFS

FS/Volume I/O Stack

FS

Volume

Block Device Interface

“Write this block,
then that block, ...”

Loss of power = loss of
on-disk consistency

Workaround: journaling,
which is slow & complex

ZFS

Storage
Pool

Block Device Interface

Write each block to each disk
immediately to keep mirrors
in sync

Loss of power = resync

Synchronous and slow

Object-Based Transactions
“Make these 7 changes
to these 3 objects”

All-or-nothing

Transaction Group Batch I/O

Schedule, aggregate,
and issue I/O at will

No resync if power lost

Runs at platter speed

ZFS I/O Stack

DMUTransaction Group Commit

Again, all-or-nothing

Always consistent on disk

No journal – not needed

FS/Volume Model vs. ZFS

ZFS IO Stack

ARCARC

Object-Based Transactions
“Make these 7 changes
to these 3 objects”

All-or-nothing

Transaction Group Batch I/O

Schedule, aggregate,
and issue I/O at will

No resync if power lost

Runs at platter speed

DMUDMU

Transaction Group Commit

Again, all-or-nothing

Always consistent on disk

No journal – not needed

ZPLZPL

ZIOZIO

VDEVVDEVVDEVVDEV

POSIX Interface
Look and feel of a file system
but much, much, more

VNODE/VFS Implementation

Virtual Devices
Take the block
interface to the lowest
level

Provide mirroring,
raid-z, and spare
operations

Dirty Time Logging for
quick resilvering

SPA

LustreLustre

ZFS Data Integrity Model

Everything is copy-on-write
• Never overwrite live data
• On-disk state always valid – no “windows of vulnerability”
• No need for fsck(1M)

Everything is transactional
• Related changes succeed or fail as a whole
• No need for journaling

Everything is checksummed
• No silent data corruption
• No panics due to silently corrupted metadata

Copy-On-Write Transactions

1. Initial block tree 2. COW some blocks

4. Rewrite uberblock (atomic)3. COW indirect blocks

At end of TX group, don't free COWed blocks
Actually cheaper to take a snapshot than not!

Snapshot
root Live

root

Bonus: Constant-Time Snapshots

End-to-End Data Integrity
Disk Block Checksums

Checksum stored with data block

Any self-consistent block will pass

Can't even detect stray writes

Inherent FS/volume interface limitation

Data Data

Address

Checksum Checksum

Address

Data
Checksum

Data
Checksum

ZFS Data Authentication
Checksum stored in parent block pointer

Fault isolation between data and checksum

Entire storage pool is a
self-validating Merkle tree

ZFS validates the entire I/O path
✔ Bit rot

✔ Phantom writes

✔ Misdirected reads and writes

✔ DMA parity errors

✔ Driver bugs

✔ Accidental overwrite

Address

Checksum Checksum

Address

Disk checksum only validates media
✔ Bit rot

✗ Phantom writes

✗ Misdirected reads and writes

✗ DMA parity errors

✗ Driver bugs

✗ Accidental overwrite

Disk Scrubbing

Finds latent errors while they're still correctable
• ECC memory scrubbing for disks

Verifies the integrity of all data
• Traverses pool metadata to read every copy of every

block
• Verifies each copy against its 256-bit checksum
• Self-healing as it goes

Provides fast and reliable resilvering
• Traditional resync: whole-disk copy, no validity check
• ZFS resilver: live-data copy, everything checksummed
• All data-repair code uses the same reliable mechanism

» Mirror/RAID-Z resilver, attach, replace, scrub

ZFS Performance

Copy-on-write design
• Turns random writes into sequential writes

Multiple block sizes
• Automatically chosen to match workload

Pipelined I/O
• Fully scoreboarded I/O pipeline with explicit dependency

graphs
• Priority, deadline scheduling, out-of-order issue, sorting,

aggregation

Dynamic striping across all devices
• Maximizes throughput

Intelligent prefetch

Dynamic Striping

Automatically distributes load across all devices

Storage Pool

ZFS ZFS ZFS

Storage Pool

ZFS ZFS ZFS

11 22 33 44 11 22 33 44 55

Writes: striped across all four mirrors

Reads: wherever the data was written

Block allocation policy considers:

Capacity
Performance (latency, BW)
Health (degraded mirrors)

Writes: striped across all five mirrors

Reads: wherever the data was written

No need to migrate existing data

Old data striped across 1-4
New data striped across 1-5
COW gently reallocates old data

Add Mirror 5Add Mirror 5

Intelligent Prefetch
Multiple independent prefetch streams

• Crucial for any streaming service provider

Automatic length and stride detection
• Great for HPC applications
• ZFS understands the

matrix multiply problem
» Detects any linear

access pattern
» Forward or backward

The Matrix (2 hours, 16 minutes)

Jeff 0:07 Bill 0:33 Matt 1:42

The Matrix
(10M rows,

10M columns)

Row-major access

Column-
major

storage

ZFS Administration
Pooled storage – no more volumes!

• All storage is shared – no wasted space, no wasted bandwidth

Hierarchical filesystems with inherited properties
• Filesystems become administrative control points

» Per-dataset policy: snapshots, compression, backups,
privileges, etc.

» Who's using all the space? du(1) takes forever, but df(1M)
is instant!

• Manage logically related filesystems as a group
• Control compression, checksums, quotas, reservations, and more
• Mount and share filesystems without /etc/vfstab or /etc/dfs/dfstab
• Inheritance makes large-scale administration a snap

Online everything

ZFS IO Stack

ARCARC

Object-Based Transactions
“Make these 7 changes
to these 3 objects”

All-or-nothing

Transaction Group Batch I/O

Schedule, aggregate,
and issue I/O at will

No resync if power lost

Runs at platter speed

DMUDMU

Transaction Group Commit

Again, all-or-nothing

Always consistent on disk

No journal – not needed

ZPLZPL

ZIOZIO

VDEVVDEVVDEVVDEV

POSIX Interface
Look and feel of a file system
but much, much, more

VNODE/VFS Implementation

Virtual Devices
Take the block
interface to the lowest
level

Provide mirroring,
raid-z, and spare
operations

Dirty Time Logging for
quick resilvering

SPA

LustreLustre

ZPL (ZFS POSIX Layer)

ZPL is the primary interface
for interacting with ZFS as a
filesystem.

It is a layer that sits atop the
DMU and presents a
filesystem abstraction of files
and directories.

It is responsible for bridging
the gap between the VFS
interfaces and the underlying
DMU interfaces.

VFSVFS

DMUDMU

ZPLZPL

ZVOL (ZFS Emulated Volume)

Provides a mechanism for
creating logical volumes
which can be used as block or
character devices

Can be used to create sparse
volumes (aka “thin
provisioning”)

Ability to specify the desired
blocksize

Storage is backed by storage
pool

ZFSZFS

DMUDMU

ZPLZPL

Raw
Access

Raw
Access

ZVOLZVOL

Lustre Object Storage Device (OSD)

Provides object-based
storage like ldiskfs OSD

Lets Lustre scale for next
generation systems

Allows Lustre to utilize
advanced features of ZFS

Storage is backed by
storage pool

DMUDMU

OST/MDTOST/MDT

OFD/MDDOFD/MDD

DMU-OSDDMU-OSD

ZIL (ZFS Intent Log)

Per-dataset transaction log which
can be replayed upon a system
crash

Provides semantics to guarantee
data is on disk when the write(2),
read(2), fsync(3C) syscall returns

Allows operation consistency
without the need for expensive
transaction commit operation

Used when applications specify
(O_DSYNC) or fsync(3C) issued

SPASPA

ZPLZPL

ZILZIL ZAPZAP

DMUDMU

DSLDSL

ZAP (ZFS Attribute Processor)

Makes arbitrary {key, value}
associations within an object

Commonly used to implement
directories within the ZPL

Pool-wide properties storage

MicroZAP – when number of
entries is relatively small
fatZAP - used for larger
directories, long keys, or values
other than uint64_tSPASPA

ZPLZPL

ZILZIL ZAPZAP

DMUDMU

DSLDSL

SPASPA

ZPLZPL

ZILZIL ZAPZAP

DMUDMU

DSLDSL

DSL (Dataset and Snapshot Layer)

Aggregates DMU objects in a
hierarchical namespace

Allows inheriting properties, as
well as quota and reservation
enforcement

Describes types of object sets

Manages snapshots and
clones of object sets

ZFS Filesystems

ZFS Volumes

Clones

Snapshots

SPASPA

ZPLZPL

ZILZIL ZAPZAP

DMUDMU

DSLDSL

SPASPA

ZPLZPL

ZILZIL

DMUDMU

DSLDSL
ZAPZAP

DMU (Data Management Unit)

Responsible for presenting a
transactional object model, built atop
the flat address space presented by
the SPA.

Consumers interact with the DMU via
object sets, objects, and transactions.

An object set is a collection of objects,
where each object are pieces of
storage from the SPA (i.e. a collection
of blocks).

Each transaction is a series of
operations that must be committed to
disk as a group; it is central to the on-
disk consistency for ZFS.

SPASPA

ZPLZPL

ZILZIL ZAPZAP

DMUDMU

DSLDSL

SPASPA

ZPLZPL

ZILZIL

DMUDMU

ZAPZAP DSLDSL

DMU is a general-purpose transactional object store
• ZFS dataset = up to 248 objects, each up to 264 bytes

Key features common to all datasets
• Snapshots, compression, encryption, de-duplication,

end-to-end data integrity

Any flavor you want: file, block, object, network

Universal Storage

ZFS POSIX LayerZFS POSIX Layer

iSCSIiSCSI

Data Management Unit (DMU)Data Management Unit (DMU)

Storage Pool Allocator (SPA)Storage Pool Allocator (SPA)

ZFS Volume EmulatorZFS Volume Emulator

FCFCDumpDumpRawRaw SwapSwapCIFSCIFSNFSNFSLocalLocal pNFSpNFS

LustreLustre

CIFSCIFSNFSNFSLustreLustre

Pool Configuration

Provides public interfaces to
manipulate pool configuration

Interface can create, destroy,
import, export, and pools

Glues ZIO and vdev layers into
a consistent pool object

Manages Pool Namespace

Enables periodic data sync

ARCARC

DMUDMU

ZIOZIO

VDEVVDEVVDEVVDEV

SPA

Pool
Configuration

Pool
Configuration

ARC (Adaptive Replacement Cache)

DVA (Data Virtual Address)
based cache used by DMU

Self-tuning cache will adjust
based on I/O workload
Replaces the page cache

Central point for memory
management for the SPA

Ability to evict buffers as a
result of memory pressure

ARCARC

DMUDMU

ZIOZIO

VDEVVDEVVDEVVDEV

SPA

ZIO (ZFS I/O Pipeline)

Centralized I/O framework

I/Os follow a structured pipeline

Translates DVAs to logical
locations on vdevs

Drives dynamic striping and I/O
retries across all active vdevs

Drives compression,
checksums, data redundancy

ARCARC

DMUDMU

ZIOZIO

VDEVVDEVVDEVVDEV

SPA

VDEV (Virtual Devices)

Abstraction of devices

Physical devices (leaf vdevs)

Logical devices (internal vdevs)

Implements data replication

Mirroring, RAID-Z, RAID-Z2

Interface with block devices

Provides I/O scheduling

Controls device cache flush

ARCARC

DMUDMU

ZIOZIO

VDEVVDEVVDEVVDEV

SPA

Source Overview

USER

KERNEL

libzfs

JNI

GUI
Management

Apps
Device

Consumers

Interface
Layer

/dev/zfs

Transactional
Object
Layer

DSLDMU

ZAPZIL

Pooled
Storage

Layer

ARC

Configuration

LDI

ZIO

VDEV

Filesystem
Consumers

ZPL

Traversal

ZVOLLUSTRE

On-Disk Format
Review

Virtual Devices

“root vdev”

“M1”
vdev

(Mirror A/B)

“M2”
vdev

(MirrorC/D)

Top Level
vdevs

Internal/Logical Vdevs

Physical/Leaf Vdevs

“A”
vdev
(disk)

“B”
vdev
(disk)

“C”
vdev
(disk)

“D”
vdev
(disk)

ZFS Storage pools are made
up of a collection of virtual
devices stored in a tree
structure
leaf vdevs (physical devices)
logical vdevs (mirrors, raidz,
etc.)

All pools contain a special
logical vdev called the “root”
vdev

Direct children of the “root”
vdev are called top-level
vdevs

VDEV Labels

Four copies of the VDEV label are written to each physical VDEV

Two labels at the front of the device and two at the end

Labels are identical for all VDEVs within the pool

L0 L1 L2 L3

0 256K N-512K N-256K512K

Label Details

Each VDEV label consists of:
8KB blank space (support for VTOC disk label)
8KB for the boot header (future)
112KB of name-value pairs
128KB of 1K sized uberblock structures (ring buffer)

L0 L1 L2 L3

....Blank Space Name/Value Pairs

Uberblock Array

Boot Header

0 8K 16K 128K 256K

VDEV Trees

“root vdev”

“M1”
vdev

(Mirror A/B)

“M2”
vdev

(MirrorC/D)

Top Level
vdevs

Internal/Logical Vdevs

Physical/Leaf Vdevs

“A”
vdev
(disk)

“B”
vdev
(disk)

“C”
vdev
(disk)

“D”
vdev
(disk)

The 112KB used for
the NVlist contains
information that
describes all the
related VDEVs

Related VDEVs are
VDEVs that are
rooted at a common
top-level VDEVs

NVlist VDEV View

 type='mirror'
 id=1
 guid=16593009660401351626
 metaslab_array = 13
 metaslab_shift = 22
 ashift = 9
 asize =519569408
 children[0]
 type='disk'
 id=2
 guid=6649981596953412974
 path='/dev/dsk/c4t0d0'
 devid='id1,sd@SSEAGATE_ST373453LW_3HW0J0FJ00007404E4NS/a'
 children[1]
 type='disk'
 id=3
 guid=3648040300193291405
 path='/dev/dsk/c4t1d0'
 devid='id1,sd@SSEAGATE_ST373453LW_3HW0HLAW0007404D6MN/a'

vdev_tree

vdev_tree

vdev_tree

One of the name-value
pairs stored in the label
is the VDEV tree

The VDEV tree
recursively describes
the hierarchical view of
the related VDEV

Uberblock

L0 L1 L2 L3

....Blank Space Name/Value Pairs

 uint64_t ub_magic
 uint64_t ub_version
 uint64_t ub_txg
 uint64_t ub_guid_sum
 uint64_t ub_timestamp
 blkptr_t ub_rootbp

 uint64_t ub_magic
 uint64_t ub_version
 uint64_t ub_txg
 uint64_t ub_guid_sum
 uint64_t ub_timestamp
 blkptr_t ub_rootbp

 active uberblock

u
b
erb

lo
ck

_
p
h
y
s_

t

The VDEV label contains an array of uberblocks (128KB)

The uberblock with the highest transaction group and
contains a valid SHA-256 checksum is the active uberblock

Block Pointers

 64 56 48 40 32 24 16 8 0

 0 vdev1 | GRID ASIZE

 1 G offset1

 2 vdev2 GRID ASIZE

 3 G offset2

 4 vdev3 GRID ASIZE

 5 G offset3

 6 E lvl type cksum comp PSIZE LSIZE

 7 padding

 8 padding

 9 padding

 a birth txg

 b fill count

 c checksum[0]

 d checksum[1]

 e checksum[2]

 f checksum[3]

Block pointers are 128 byte
structured used to physically
locate, verify, and describe
data on disk

Each block pointer contains
a DVA (Data Virtual Address)
used to address the data

Comprised of VDEV, offset

Multiple DVAs give multiple
paths to the data block

Ditto Blocks
dnode_phys_t

dn_blkptr[1]
dva3 dva2 dva1

dn_nblkptr = 3

Level 0

Level 1

Level 2

blkptr_t

Dnode

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels
uint8_t dn_nblkptr;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[N];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

fixed length
fields

variable
length fields

dnodes are 512-byte
structures which organize a
collection of blocks which
make up an object

The portion of the dnode
which we store on-disk is
pictured here

The dn_blkptr will point to
the array of block pointer
which will point to the
indirect, direct, and data
blocks

Indirect Blocks

Each dnode_phys_t
structure has up to 3 block
pointers

The largest indirect block
size (128KB) can contain
1024 block pointers

E.g.: Assume 128Kb blocks,
each indirection level gives
1024 block pointers * 3 (3072)
and addresses a 384MB file

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 3
uint8_t dn_nblkptr = 3
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[1];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

dn_blkptr[]

...
Level 2

Level 1Level 1

Level 0

......

dva3 dva3 dva3

dva2 dva2 dva2

dva1 dva1 dva1

...

Indirect Blocks (cont.)

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 3
uint8_t dn_nblkptr = 1
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[1];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

dn_blkptr[]

...
Level 2

Level 1Level 1

Level 0

dva3

dva2

dva1

...

To achieve a maximum of
number of blkptrs we steal
space from the dn_bonus
member

Use the DN_BONUS() macro
to determine where the bonus
buffer actually exists
#define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \
 (((dnp)->dn_nblkptr - 1) *
sizeof(blkptr_t))))

In practice only one block
pointer is used

Metadnode
dnode_phys_t os_meta_dnode
zil_header_t os_zil_header
uint64_t os_type
char os_pad[376]

dn_type DMU_OT_DNODE
dn_indblkshift;
dn_nlevels 1
dn_nblkptr 3
dn_bonustype;
dn_checksum;
dn_compress;
dn_pad[1];
dn_datablkszsec;
dn_bonuslen;
dn_pad2[4];
dn_maxblkid;
dn_secphys;
dn_pad3[4];
dn_blkptr[3];
dn_bonus[BONUSLEN]

dn_blkptr[]

...
 0 1 2 3 4 1023 1024 1

0
2
5

1
0

2
6

1
0

2
7

1
0

2
8

1
0
2

9

2
0
4
7

2
0

4
8

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 3
uint8_t dn_nblkptr = 3
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[3];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

dn_blkptr[]

Level 2

Level 1Level 1

Level 0

......

.....

objset_phys_t

Complete View
 L0 L1 Boot L2 L3

....Blank
Space XDR Encoded nvpairs

uberblock_phys_t array

uint64_t ub_magic
uint64_t ub_version
uint64_t ub_txg
uint64_t ub_vdev_sum
uint64_t ub_timestamp
blkptr_t ub_rootbp

dnode_phys_t metadnode
zil_header_t os_zil_header
uint64_t os_type =
 DMU_OST_META

uint8_t dn_type =DMU_OT_DNODE
uint8_t dn_indblkshift;
uint8_t dn_nlevels
uint8_t dn_nblkptr;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[3];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

...
 0 1 2 3 4 1022 1023

uint8_t dn_type= DMU_OT_OBJECT_DIRECTORY
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 1
uint8_t dn_nblkptr = 1;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[1];
uint8_t dn_bonus[BONUSLEN]

root_dataset = 2
config = 4
sync_bplist = 1023

o
b
je

c
t_

d
ir

e
c
to

ry

ro
o
t_

d
a
ta

s
e
t

c
o

n
fi

g

s
y

n
c
_

b
p

li
s
t 1

0
2

4

1
0
2

5

1
0

2
6

1
0

2
7

1
0
2

8

2
0
4

6

2
0
4

7

2
0
4

8

2
0
4

9

2
0
5

0

2
0
5

1

2
0

5
2

3
0
7

0

3
0
7

1

