
Lustre Enhancements - Technical White Paper

Using Interval Tree to scale extent locks

04/21/08 Sun and ORNL Confidential Page 1 of 6

Author Date Description of
Document Change

Client Approval Client Approval
Date

Jay Xiong Mar 24, 2008 Create the document

Bryon Neitzel Mar 29, 2008 Review and edits

Nirant Puntambekar Apr 1, 2008 Review and updates

Jessica Johnson Apr 1, 2008 Review.

Jay Xiong Apr 7, 2008 Revised per comments

Jay Xiong Apr 16, 2008 Clarify and update doc.

04/21/08 Sun and ORNL Confidential Page 2 of 6

Problem Statement

When a shared file is being accessed by multiple clients, the clients need to grab an
extent lock from the OST's (Object Storage Target's), to prevent them from writing to
the same portion of the file at the same time, which would lead to data corruption. Also
when the shared file is being accessed by thousands of client simultaneously, the time
to access it may increase dramatically,since there could potentially be millions of extent
locks on the OST side, and the new file access requests first must check for any
conflicting locks.
In the original implementation, the OST used a linked list to manage all the extent locks,
and traversed it sequentially to check if a conflicting lock overlapped the requested
region. The delay in conflict detection could cause an apparent freeze of the OST.

Approach

Based on the above analysis, the conflict detection process requires a more efficient
mechanism to accelerate finding the overlapping extent locks.
An interval tree algorithm was chosen to manage the extent locks on the OST side. An
interval tree is an enhanced version of a RB-tree. Compared to a RB-tree node, the
interval tree node contains a region parameter, to indicate how long this node spans
and a number called max high, which indicates the maximum region that the sub-tree of
this node may cover.

Figure 1: Interval tree

04/21/08 Sun and ORNL Confidential Page 3 of 6

For the above figure, the root node of the interval tree is [16,21]:30, which means the
extent lock represented by this node covers the bytes 16 to 21 for the file and the max
high is 30, which is the maximum position of its sub-node's reach. When a new extent
lock query comes in from the client, it will only recursively check which sub-tree
overlaps the requested region of this extent. The search time can hence be reduced to
O(logn), where n is the total number of nodes(extent locks).

Test cases and Results

Two types of tests were performed.
 The first was a unit test which compared the search performance of the interval tree vs
a list implementation. We did this with randomly generated nodes. The test results are
as shown in Table 1.

Request size(bytes) List search(ms) Interval search(ms) Contended locks

4K 166 0 234

128K 168 0 318

1M 167 0 684

16M 164 1 7,871

64M 170 6 31,259

256M 165 26 125,185

1G 171 103 500,791

2G 169 57 276,642

3G 170 205 952,993

4G 166 207 1,000,000

Table1: Unit test results

We preset different size regions of 1M in the interval tree, then produced a request
region with a specific width. The interval tree was then searched to get all the regions
which overlapped the requested region. After the search was completed, the time and
number of locks which overlapped were reported.

In most cases (when the request size was less than 2G in a 4G file), the interval tree
wins. However, if most of the 1M regions are overlapped by the requested region, the
list search wins because of the additional overhead of tree management, which leads to
some nodes being accessed multiple times. This might not be a common case in
reality, as a 1G bytes write to a file should be relatively rare.

04/21/08 Sun and ORNL Confidential Page 4 of 6

Another test was performed at LLNL (Lawrence Livermore National Laboratory) to take
advantage of their large clusters. LLNL ran a test case where 9600 tasks read a
shared file, 1K bytes per read, via 400 clients on a Lustre 1.6.2 system. The hardware
configuration used was
- 24 servers, 3 OSTs per OSS
- Quad x86_64 CPU 2.80GHz
- 4GB of RAM
- 2 GigE Links
- 1 FC2 connection directly attached to DDN 8500 storage.

 The test results are as below.

 1.6.2 - No soft lockup patches (Lustre 1.6.2)
 1.6.2+ IntTree - With Interval Tree Patch
 1.6.2+ IntTree + LockGrant - With Interval Tree and Lock Grants Patches

Rounds 1.6.2 1.6.2+ IntTree 1.6.2+ IntTree + LockGrant

1 33.533s 17.861s 8.598s
2 22.370s 16.385s 10.756s
3 34.979s 17.295s 6.785s
4 32.446s 18.022s 10.759s
5 34.530s 13.884s 7.710s
6 32.768s 17.058s 7.971s
7 34.669s 17.333s 6.777s
8 32.337s 13.227s 7.719s
9 31.703s 13.244s 7.813s
Average 31.482s 16.155s 8.215s

Table2: System test results

The tasks were run for 9 rounds and the results were averaged to get more accurate
performance data. Because the extent locks are all read locks, as part of another bug,
a Lustre engineer came up with a solution which accelerated the lock grants. Though
this is specialized to read locks, it is listed here because of its efficiency in decreasing
the access time.

04/21/08 Sun and ORNL Confidential Page 5 of 6

From the test results, the interval tree decreased the access time by about 50% with
further gains from the lock grants patch. Performance should also improve as the
number of locks increase.

Conclusions & Future work

Interval tree search is functional and seems to provide the expected performance
benefits. However in the current implementation, the search time is not bound to
O(logn), additional work could be performed to improve the existing algorithms.

04/21/08 Sun and ORNL Confidential Page 6 of 6

	Problem Statement
	Approach
	Test cases and Results
	Conclusions & Future work

