
1

This tutorial will cover some of the advanced file layouts available in
Lustre. (NOTE: This will not cover directory striping.)

If we run out of time, slides will be posted so that the examples can be
reviewed.

2

This layout is usually the most familiar to users.

They will typically adjust the stripe count but may also adjust the stripe
size if they are familiar with their I/O patterns.

3

File layouts are controlled using the “lfs setstripe” command. The
command shown here sets a layout that matches the diagram on the
previous slide.

Note: The file must not exist prior to running this command otherwise an
error will result.

Many other striping options exist, but most of those are use for more
advanced layouts (which we will discuss in a little while). Some other
options for standard file layouts are –i, -o, and –p. Typically users should
not use –i or –o unless they really know what they are doing. The –p
option might be useful to normal users if the file systems has different tiers
of storage.

For the –i option, a value of -1 indicates that Lustre should chose the
starting OST.

4

All file layouts can be viewed using ”lfs getstripe”. Several fields are
printed, and we can see the stripe count and stripe size that were
chosen for “lfs setstripe” (highlighted in yellow). The output also shows us
exactly which OSTs were assigned to the file.

Notice that the stripe offset matches the index of the first OST.

5

6

You can think of PFL as an array of normal layouts that apply to different
sections of the same file. This gives much greater control of a file’s layout
if needed.

This can also be used by sys admins to mitigate the possibility of a user
filling up an ost. The admin can define a default PFL layout that
increases the stripe size as the file gets bigger.

7

The ‘lfs setstripe’ command is used with the –E option to define PFL
layouts. The –E option defines the end of the extant where the
subsequent file stripe options apply.

All the normal layout stripe options should be available to each
component.

A “-1” or “eof” can be used to denote the end of the file.

8

9

Viewing a PFL layout is done in the same way as a normal layout: using
’lfs getstripe’.

The layout shown here corresponds to the 3-component PFL layout we
defined for the diagram 2 slides back. (This slide only shows the first of
the three components)

The red-highlighted line show the field that contains the number of
components in the file. The yellow-highlighted lines show general
parameters for the first component (component ID, start/end points for
the component, and whether the component is initialized or not.). The
green-highlighted lines show the layout information for the first
component (stripe count, stripe size, and allocated osts).

10

This slide shows the other 2 components of the PFL layout.

Notice that neither of these components is initialized immediately after
the file is created (as is evidenced by the lcme_flags=0 and
lmm_stripe_offset=-1).

Yellow-highlighted fields show component-level parameters while the
green-highlighted fields show the layout striping parameters for each
component.

11

When a client attempts to write data to a component that has not yet
been initialized, I/O will pause until Lustre allocates OSTs for the next
component.

This snippet from ”lfs getstripe” shows that the second component was
initialized after writing 4MB to the file. The third component (not shown)
remains uninitialized. The yellow-highlighted fields show some key
parameters:
- lcme_flags is now set to “init” instead of “0”
- 4 osts have been allocated to the component
- lmm_stripe_offset matches the index of the first allocated ost

Once allocated, the OSTs for a component remain allocated. So
truncating a file will not cause later components to unallocated their
OSTs.

12

PFL does not allow ”holes” in the layout, so the only component that can
be deleted is the last component.

Be careful when deleting a component. If there is data in that
component, you will not be prompted before it is deleted.

13

We can start the file with just a single component and then immediately
begin adding data to it. But before we reach the end of the first
component, we extend the layout with two more components that
cover the rest of the file. After that, we can write data as far as we want
into the file.

14

The lcme_id field of each component appears to be tied to the
lcm_layout_gen field which contains a generation number that
increments whenever there is a change to the layout. This prevents
collisions or re-use of the same component index as the layout changes.

15

These are just a few of the component-specific options available for lfs
getstripe. (NOTE: There seems to be a mistake in the online manual. It
shows using the “-I” option to list the indices of all components in a file. In
my testing, it only listed the last initialized component.)

NOTE: Make sure there is not space between “-I” and “2”. Otherwise you
will get an error.

16

Appending to a file will cause all components to be initialized even if
there is no data in those components.

17

18

There could be uses for DoM even for larger files (ex - a structured file
that begins with a small header describing the layout for the rest of the
file’s data).

19

The ‘--layout’ option could also be used instead of ‘-L’

20

Since a DoM layout is just a type of PFL layout, they are displayed almost
identically. The key differences are:
1) Stripe size will always match the extent end (green-highlighted fields)
2) The stripe count will be ‘0’, although more accurately it is ‘1’ (red-

highlighted field)
3) The pattern is ‘mdt’ instead of ‘raid0’ (blue-highlighted field)

This doesn’t seem to show which mdt the first component resides on. You
can get the mdt for the file using “lfs getstripe –m <file>”, and this same
mdt will contain the first component of the file.

21

The dom_stripesize values are set on a per-MDT basis. So it is possible for
two MDTs in the same file system to have different values.

If dom_stripesize is set to a value below 64K, the lctl command will not
return an error and it will appear to have worked. But when you query
the value of the parameter, you’ll find that dom_stripesize is just set to its
minimum value of 64 KB.

However, if you try to set dom_stripesize to a value above 1 GB, you wil
receive a “numerical result out of range” error, and its value will remain
unchanged.

If the value is not 64 KB aligned, it will silently round down the value to the
nearest 64 KB aligned value and use that as the value.

22

23

24

25

26

The “-N” option without a value is equivalent to “-N1”. The long option --
mirror-count can also be used instead of –N.

The stripe options are the same as those used by normal and PFL layouts.
The ones most commonly used will probably be stripe count, stripe size,
and ost pool.

The only option supported by --flags is “prefer”. This gives Lustre a hint
about which mirrors it should try to use for I/O, but there is no guarantee
that the preferred mirrors will be used.

27

Even though FLR uses a different command to create the layout, it is still
viewed using “lfs getstripe”. (Some fields are omitted for clarity. One field
in particular that is missing is the lcme_id field that uniquely identifies
each component.)

The output show there are 3 mirrors, but there are a total of 4
components since the third mirror has a PFL layout. This slide also show
details on the first two mirrors. They use the same layout (stripe count = 2
across the entire file) but they have different OSTs assigned to them.

Note that they are identified by different lcme_mirror_id fields.

Yellow-highlighted fields describe the number of components/mirrors in
the file. The blue- and red-highlighted fields are for the first and second
component respectively. Note that the values are identical except for
the lcme_mirror_id field which uniquely identifies each mirror.

28

The last two components have the same lcme_mirror_id because they
are part of the PFL layout that comprises the third mirror.

The green-highlighted fields are intended to emphasize two things:
1) These two component are part of the same mirror
2) The extents are non-overlapping and cover the entire range of the file

29

30

When using a victim file, Lustre will verify that the data matches or else it
returns an error. If the user is sure that the files match, the --no-verify
option can be added to skip this verification check.

If successful, the victim file will be removed from the file system
namespace.

31

32

33

PFL delays instantiation, but when it finally does instantiate the
component, that layout is used for the entire region without changes.

SEL basically turns a single component into two sub-components,
although the second sub-component is never instantiated and just acts
as a placeholder until the MDS decides what action to take when
expanding the first sub-component.

34

SEL alters the components on-the-fly. If the OSTs do not run low on
space, then eventually the extension component shrinks to zero. At that
point, the component is no different than the PFL layout.

SEL would probably be used by sys admins more than normal users. A sys
admin could use SEL to define a layout that starts using storage on a
“fast tier” that has smaller capacity. If the fast tier fills up, the file
automatically switches to using at larger capacity “slow tier”.

35

36

If an OST runs low on space, just abort the current component early and
start using the next component. When component 3 gets instantiated,
the MDS should choose osts that are not low on space.

37

If the SEL component is the last component, you can’t just abandon it
early and move to the next component. Instead, the MDS will extend
the component using the same layout, but with a different sent of OSTs.
It can keep doing this is OSTs keep running out of space.

38

From my testing, it looks like the minimum value for the extension size is
64MB, but it’s not clear why. This doesn’t appear to be documented in
the Lustre manual.

39

The green-highlighted fields illustrate that the initial range of the
extendable component matches the extension size of the extension
component.

The red-highlighted fields illustrate three things:
1) The lcme_flags field is set to “extension” for the non-instantiated

extension component
2) The extension component always starts from the same spot that the

extendable component ends
3) The end of the extension component matches the end of the region

defined in the original ”lfs setstripe” command

40

The green-highlighted fields show that, prior to data being written, the
extendable component starts out as a zero-length component. The red-
highlighted fields denote some of the important fields in the non-
instantiated extension component.

41

42

43

