
Lustre in Finance

Steve Crusan and Brock Johnson
Hudson River Trading

A talk mostly about about DNE3, Lustre 2.14/2.15
client/server and some NFS vs Lustre

Overview

Who is HRT?

2.14/2.15 client/server

DNE3

Lustre Metrics and Tooling

Final Thoughts

Questions

Who is HRT?

Hudson River Trading

Hudson River Trading
Hudson River Trading (HRT) is a quantitative trading firm headquartered in New York City and founded in 2002. HRT is a
committed sponsor to open source software and partnership with the community.

HRT currently has a small, but important Lustre installation.

This talk will cover HRTs experiences onboarding Lustre into our environment, Lustre 2.14 (client/server), DNEv3 (round robin
metadata placement), and will showcase some of our tooling that we plan to open source in the future.

https://en.m.wikipedia.org/wiki/Quantitative_trading
https://en.m.wikipedia.org/wiki/New_York_City

Lustre 2.14/2.15

Lustre 2.14/2.15 in production
● I think at this point, we’re basically running 2.15 LTS, but regardless, all 99% of clients/servers are at

2.14.0_<some_patch_level>. Whenever I accidentally say 2.14, assume I mean 2.15

● Not our first rodeo, knew there would be some issues running very new client/server code. Someone has to do it, see
Stephane Thiell’s presentation about 2.12 from LUG19.

● Found a number of issues before we went into production, due to purposely running pathologically horrible workloads
○ Mdtest across many nodes, each creating millions of files/dirs under their own trees. Really wanted to test the

DNE3 code under high levels of concurrency. Found a number of bugs.
○ Intermixed IOR/fio w/ the above. Not looking for hero numbers, looking to break things

○ We could’ve done a better job running the above w/ failovers too. The few times we did do failovers, they seemed
to be “okay”. As time went on in production, failovers became troublesome, and extremely painful

● Most trouble was from DNE3 MDT-to-MDT (MDT_OUT?) logs and failovers. Even under high loads in production, we
didn't really have any failovers. Most failovers caused by bugs in HA mgmt tooling, outside of the core Lustre code.

○ However, when we did need to update our systems w/ newer Lustre code to fix some issues, we needed to failover
targets, and that’s where the trouble began

Big reason for 2.14: DNE3
● We have plenty of NFS systems, they all have transparent (read mkdir() just works), distributed metadata performance
● DNE1: We are not going to artisan handcraft directory trees, and our codes aren’t ever going to be Lustre (or storage

system aware, e.g. minus POSIX vs S3), so mkdir() from an application should “do the right thing”. DNE1 so only solves this

1 child directory below anyways.
○ Placing each project on an MDT (DNE1) is “okay”, but if said “project” needs a ton of aggregate metadata IOPs,

then you are limited to the performance of a single MDT.
■ Might not be important for some users, but HRT is very metadata performance sensitive, so not having DNE3 limits the use of

the file system to only certain codes. More to life than bandwidth…

● DNE2: Directly from the manpage and presentations, this often isn’t recommended, minus maybe at the top of a

directory tree, where any child dirs are on a different MDT (same DNE1 issue). If you stripe an entire directory tree from
top -> bottom (inherited striping), you need a ton of inodes that point to the remote MDTs, which reduces performance
and magnifies the number of inodes required. Only seems useful for singular large directories, with > stripe_count=4
having diminishing performance returns. We tried this pre-2.14, and ran our smaller Lustre system out of inodes/MDT
space, and ldlm also went crazy due to the concurrency.

● DNE3: Set a “policy” at the top of a directory tree, and let the client randomly place new child dirs on different MDTs. No
application code changes, minimal administrative overhead (well, mostly, :-))

DNE3

DNE3 in practice
● More or less “automatic” (via mkdir()) DNE1

○ If you’ve benchmarked mdtest + optimal/handcrafted DNE1 dirs, expect similar performance
● It’s pretty simple to understand, see man lfs-setdirstripe / lfs-getdirstripe

○ Full example command: lfs setdirstripe -D -c 1 -i -1 -X <int> -max-inherit-rr <int>
○ Needs -D (set default layout)
○ -c 1 (1 MDT)
○ -i -1 (any target, similar to OST object creation)
○ -X <depth> (-1 == inherit space balancing forever in a tree)
○ –max-inherit-rr <depth> (try as hard as possible to round robin until below subdir depth X)

Cont. DNE3 in practice
● An example to understand the behavior

Cont. DNE3 in practice
● That seems unbalanced? No, we went below the –max-inherit-rr depth (4) set on the top level directory depth. After that,

Lustre will try to space balance (this test system does have some space imbalance)

Cont. DNE3 in practice
● Notice the behavior once lmv_max_inherit_rr < 1.

○ Once we hit the “sub3” (level 4), no more round robin

Cont. DNE3 in practice
● Space imbalance. Client code will try to correct the imbalance once we are below the RR depth (normally)

Cont. DNE3 in practice
● What we do in production

○ New 2.15 file systems (or if you are running 2.15 server side w/ MDT0 mounted) automatically set -X -1 –max-inherit-rr 3 at
root of file system

■ Probably a good choice if you have an existing system, let space balancing do its thing over time
■ We started fresh on 2.15
■ If you absolutely want to force RR on a particular dataset, set your directory layout, then, set (client side) lctl

set_param lmv.<fsname>*.qos_threshold_rr > 20 or 30. Similar to lod.<fsname>*.qos_threshold_rr. Be careful though
○ For any project top level dirs, and/or top level user scratch dirs:

■ lfs setdirstripe -D -c 1 -i -1 -X -1 -max-inherit-rr 8 <directory>

○ Why not use –max-inherit-rr -1 ?
■ Not sure, there’s no guidance out there, and scans of our other file systems showed a depth of 8 to be good enough

for most circumstances.
■ I also felt that having a “cutoff” at a certain depth would help understand the behavior better. Or if there was a bug in

the code, it would be easier to debug.
■ Maybe a bit short sighted, but it’s been good for us 99% of the time. Whamcloud should probably provide more

guidance on this moving forward.

Cont. DNE3 in practice
● Personally, I’d try to set your –max-inherit-rr deeper than you think it should be. Over time round robin should normalize the

placement/balance. If you’re performance sensitive, and rely on high metadata IOPs rates on all MDSs, space balancing has no
concept of performance, and it’s likely to hurt you.

○ Make your MDTs bigger than you think you need so space balancing isn’t the most important thing in the world
○ An extra 10TB for metadata (cost spread across all MDTs) is less costly for performance than having that for data storage. If

your file system can write at 100GB/s, that’s 100 seconds of extra capacity at peak write throughput. Not worth it in my
opinion.

○ It will take you a lot longer to deal with full MDTs.
○ It will take your metadata intensive applications longer to run if you don’t round robin over all MDTs

● Test this out on your own first, before you throw a production application into a DNE3 directory setup
○ As noted, if you’re imbalanced already, might need to set lmv.<fsname>*.qos_threshold_rr to ignore space for now.
○ It’s easy enough to run mdtest, or even as simple as the toy mkdir script from previous slides
○ Learn lfs getdirstripe (annoyingly, -D option shows different than w/o -D, use both)

● Make sure you are running 2.15 LTS.
○ There were bugs with cached xattrs where remote clients (different from where lfs setdirstripe was run) wouldn’t see the

updated metadata layout, and there’s a plenty of fixes for things we’ve hit. Take advantage of our pain, :-)

How is DNE3 working out for us?
● Of our hundreds of millions of files (sigh), very balanced (1-2% difference) across all MDTs.

○ Between the time of creating this presentation and presenting it, we’ve hit some weird issues w/ MDT balancing (more later)
○ Overall, I think it’s been pretty damned good

● Our metadata performance mostly scales w/ the number of MDTs
○ If you have 10 MDSs, and each MDS can do 100K getattr/s, 1M getattr/s is easily obtainable w/ good directory round robin layout
○ There’s still some directory hotspots, but it’s been very minimal. See appendix for some tools to debug hot directories.
○ Remember, the extent of our DNE3 “tuning” was 3-4 lfs setdirstripe commands at a few locations in the filesystem, that’s it

● Recently, we’ve hit some strange issues in regards to balancing that weren’t very intuitive
○ See commit message: https://review.whamcloud.com/#/c/45544/
○ This was a big fail, as the Lustre code decided that even though the directory depth (from where lfs setdirstripe) was set was not below

the max-inherit-rr level (so > 0), the stickiness placed 98% of directories for a user workload on the same MDT, and said workload created
many millions of files (and about 300 subdirs), and was hellbent on stat()ing each and every one of them

○ On clients: lctl set_param lmv.<fs>*.qos_threshold_rr=20 ←I’m tempted to set it even higher
■ This is counter intuitive. I want space balancing if things get out of whack (not waiting until > 20%), but I don’t want the code

deciding that a directory is too deep and sticking all/most children on the same MDT. This might make sense very deep into the
tree (below –max-inherit-rr <depth>), but even so I’d prefer in the future to always round robin unless the space balancing gets
out of whack

https://review.whamcloud.com/#/c/45544/

Cont. How is DNE3 working out for us?
● This pegged almost all metadata IOPs to a single MDT, and eventually caused the MDS load to get out of control,

and cause a failover. The failover also hit a bug (that was extremely rare until we applied new fixes for a different

recovery problem :-)). Ended up with a number of MDTs waiting for each other to recover, aka a deadlock.

Aborting recovery wasn’t guaranteed to work, so we Jurassic Park’d the file system (unmount all targets,

remount and deal with all the evictions and madness).

● Will be submitting an RFE to disable the internal heuristics where Lustre decides that the overall depth of a

directory (regardless of the administrative policy set) is deep enough to disregard admin setup. I understand the

reasoning for not making remote dirs forever, but let the admin decide that. If someone loses performance

because mkdir and opens/stats deep into a directory tree are too slow, they get what they deserve.

● This performance “enhancement” / stickiness made performance much worse than the extra latency of remote

dir lookups

The Bug List … there’s others
LU/Link Description Impact Notes

LU-15761 cannot finish MDS recovery High - Deadlock on recovery

LU-15645 gap in recovery llog should not be a fatal error High - failovers evicted all clients

LU-15644 failed llog cancel should not generate an error Low - annoying error messages

LU-15643 do not loop on OI Scrub on same FID Medium - until oi scrub was disabled, MDT
constantly stopped accepting requests, stuck in
a loop

LU-15205 cfs_hash rehashing can race with hash iteration High - servers crash under load Found before we went into production

LU-15070 client does not inherit default directory layout if
changed

Medium - setting directory layout on 1 client
might not be propagated to users, so no DNE3

Found before we went into production

LU-14954 socklnd: fix link state detection Medium - under certain circumstances, the
socklnd code decides it's time to null route LNET
traffic, even if the link is fine

Related to incorrect handling of link state
changes (such as adding/removing virtual
interfaces) - Found before we went into
production

https://jira.whamcloud.com/browse/LU-15761
https://jira.whamcloud.com/browse/LU-15645
https://jira.whamcloud.com/browse/LU-15644
https://jira.whamcloud.com/browse/LU-15643
https://jira.whamcloud.com/browse/LU-15205
https://jira.whamcloud.com/browse/LU-15070
https://jira.whamcloud.com/browse/LU-14954

Summary of bugs
● In production, mostly MDT-to-MDT recovery/log issues

○ Our metadata intensive codes put a lot of less tested code in the hot path, that’s for sure

● We had no experience with these failover scenarios, so learning experience for us

● Whamcloud identified issues quickly, and had patches ready to go in short order

● These issues seemed severe, and they were, but the overall amount of downtime (read filesystem hung/offline)

was actually pretty minimal, so I still have a job

Monitoring/Tooling

Now for the boring stuff …
● HRT is a prometheus shop, so *everything* is prometheus based

○ https://www.hudsonrivertrading.com/scaling-prometheus/
● In-house Lustre prometheus exporter

○ Runs on all Lustre clients/servers
○ Powers all of our Grafana dashboards. Not going to show pictures, everyone has seen some iteration of these by now. Probably looks like

what y’all have too.
● We also use AlertManager - all alerts based on prometheus queries

○ What we alert on
■ OST/MDT inode/space imbalance > X

● We use PFL, so mostly worried about MDT imbalance due to performance. Our MDTs were overprovisioned so that we
hopefully don't run out of space easily. Losing (ex: 10TB) of data capacity is much better than filling an MDT.

■ Client import states not IDLE/FULL state (see lctl get_param {osc,mdc}.*.import) for long periods of time
■ Server side targets in recovery for > X seconds
■ Standard OST/MDT inode/space fill rates
■ Blackbox I/O tests runtimes

● “How long does ‘ls’ take?”
○ Seems stupid/basic, but its what users notice first, and it’s usually an indicator of “something” going on

■ Don’t let prometheus run lots of statfs() calls from a grid, unless you cache the results (llite.*.statfs_max_age=30); it's an expensive
call, and I personally find little use for this on remote file systems, although NFS handles it better…

https://www.hudsonrivertrading.com/scaling-prometheus/
https://prometheus.io/docs/alerting/latest/alertmanager/

Cont. Now for the boring stuff …
● We also run a Lustre REST API service on all servers

○ Written in Go, excellent built-in HTTP server w/ good performance and threading
○ Powers some internal tools that yester-year involved SSH+screen scraping
○ Eventually will be the prometheus exporter backend (for servers), but we needed the exporter first, before we developed the

API server.
● Accompanying “lladmin” tool

○ Why didn’t you contribute this to the core Lustre code?
■ NIH syndrome of course, much to the dismay of my coworker
■ I’m absolutely terrible at C, so the development cycle would have been much longer, poor(er) code quality, etc.

○ Basically just uses lctl get_param under the hood since Lustre hasn’t yet unified /proc vs /sys, marshals to JSON (or a struct),
and bobs your uncle.

lladmin
● Run on any node that has 1 or more file systems mounted that you care about

○ Not a replacement for lctl/lfs, rather extra functionality
○ QoL tooling for people not as Lustre savvy (we have shared responsibility for our storage systems, so not everyone has a PhD in Lustre)

■ I’m sure most here know how to get the IP address a target is being served from, but not everyone remembers that, and some
feedback on internal documentation is that it’s a bit crazy. On our other storage systems, a simple command shows you what you
need.

● Simple example, show all usage on a file system (read the quota accounting). There’s a post on the mailing list from 14 years ago about a repquota
command. Client side tooling automatically connects to API servers (uses osc/mdc import data and a simple yaml config file):

Cont. lladmin
● Ltop -like realtime tools, works fine w/ 1 sec refresh, connecting to all servers simultaneously

○ Doesn’t this already exist via ltop? Yes, ltop is great, however I was looking for a unified codebase to do *many* different
things

○ Grafana is great, but sampling doesnt show peaks (especially when under load), and sometimes you miss prometheus scrapes

● Metadata

Cont. lladmin
● Data

Cont. lladmin
● Open files

○ Uses mdt.<target>.exports.<client_nid>.open_files
○ Can use a redis cache so lookups aren’t required

Cont. lladmin
● Local client I/O operations

○ This seems like an llstat replacement, but it really just combines a few different equivalent llstat commands. Basically,
another QoL for people used to nfsstat.

Cont. lladmin
● Other simple things / toy examples

○ Show all Lustre targets, with their server IP listed (who remembers which host when you have a bunch of targets)
○ Show Lustre target state on a node (including history)

■ Simple to capture via lctl of course, but make it easier
○ Multi-threaded lfs find

■ Spawn lots of threads on a host that take a “root” directory and distribute child dirs amongst other threads
● Not a dwalk replacement, but lustre aware, and can be distributed amongst many compute nodes with many

“subroot” directories

Cont. lladmin
● Very easy to extend the REST API endpoints and add more:

○ Create the core code that parses something from lctl/lnetctl/etc
○ Create methods to marshal to JSON
○ Create an HTTP handler using the above tooling
○ Add unit tests, :-)
○ Compile new binary, place on servers, restart service

● Simple config
○ Servers have REST API keys, credentials, and certificates
○ Client API config needs credentials and pub certificate. Everything else is auto determined via osc/mdc import subsystem

data from mounted filesystem(s)
● Client side code that interacts with REST API endpoints on each server is multithreaded (Go routines), and from a previous job I was

able to concurrently query 100+ Lustre servers and display realtime stats in less than 1 second, w/ limited CPU/memory usage

This stuff seems interesting, can I use it?
● HRT is cool with me open sourcing the prometheus and Lustre API tooling

○ Need to do all of the paperwork

○ Will post on the lustre mailing list when the code is on github

○ Can also check here periodically: https://github.com/hudson-trading

● Will add more API endpoints as time permits, definitely looking to add realtime jobstats

○ Already have API endpoint, just need to write the lladmin client side code to render

https://github.com/hudson-trading

Final Thoughts

Lustre 2.14/2.15, DNE3, Lustre vs NFS, etc
● Shows a lot of promise, and raises bar for Lustre metadata performance!

○ I would personally wait until 2.15.{2,3}, unless you are a cowboy

○ Still some unresolved bugs around directory permissions (if you have 50M directories, 5-10

of them might not have the right permissions). Annoying, but hard to reproduce due to not

having time and likelihood of triggering. 0 instances of this w/ the same codes on NFS

○ idle_timeout=20 (default) makes failovers much easier (when they work), since targets

don’t need to connect to every client and do replays

○ There’s bound to be more recovery and bugs as well as race conditions w/ MDT_OUT and

OST_OUT communications

○ OSTs are isolated. MDTs are not isolated … at all

■ MDT-to-MDT connections (for remote dirs, etc)

■ MDT-to-OST connections

Cont. Lustre vs NFS, etc
● We haven’t thoroughly tested some of the 2.15 data performance improvements, because our data I/O performance was good enough. We are

grid computing, not a defensive I/O and/or checkpoint shop, so we don’t need 5TB/s of write throughput. However, we achieve better
performance (throughput/iops/latency) than our NFS based platforms in most circumstances.

● There are certainly hidden “costs” of Lustre vs NFS
○ Before flash became affordable, Lustre/GPFS could handily beat NFS based systems in throughput. Not totally true anymore, it’s a lot

closer than it was in the past, and until DNE3, NFS systems w/ some flash for metadata handily beat Lustre in non-data ops.
○ NFS “failover” is stupid simple (move IP address, gratuituous ARP, 10 seconds at most), and the NFS client just works. The same cannot be

said for Lustre, whether it be failover scenarios, or even managing the lustre client on many compute nodes. There’s an admin burden
here that I think most people understand.

● Do the performance improvements outweigh the hidden Lustre costs?
○ For us, it’s sometimes…
○ 1 ms vs 2ms for us doesn’t matter. No sane trading firm relies on I/O latency for live low latency trading, especially on a network storage

system. NFS on flash is pretty good for the average workload, and newer kernels can use multiple TCP connections to a single NFS server,
etc.

○ Lustre likely wins in very high end performance scenarios (still a wash on metadata I think, unless there’s a ton of MDSs in a file system)
○ Higher throughput/IOPs ceiling is nice, but again we’re not a capability/peak shop. Increased I/O parallelism and performance over time

might outweigh these costs, but for now, Lustre needs to improve non-performance features a bit more …

How Lustre can improve…
● Disabling the server side page cache when using non-rotational media seems like an anti-pattern

○ I’ve seen the benchmarks that prove me wrong (faster to disable), and it seems like more of a Linux problem than a Lustre
problem, https://jira.whamcloud.com/browse/LU-11347

○ BSD based NFS scale out systems do not have this problem. Can do many GB/s directly out of server side cache w/ almost
zero disk IOP/s. In finance, we read a lot of the same datasets from our grid, so this would help. NFS based (linux or BSD) also
have in-memory inode caches, which help with performance too.

● Adding/removing targets from a file system is very, very, very cumbersome.
○ It’s easy to add storage, but now you have a severe I/O (data or metadata) imbalance problem, especially if you depend on

metadata performance being “sharded” across all MDTs. Sitting around and waiting for the problem to fix itself is a
non-starter, and asking for trouble. Restriping data and metadata is extremely crazy to do on a many millions of files on a
system. NFS appliances and GPFS handle this out of the box.

● DNE3 should be more automatic
○ No other file systems require all of this (why not –max-inherit-rr=-1 always?)
○ I realize some Lustre admins enjoy this level of configuration, so give them the tools

■ It’s fairly difficult to keep track of directory depths, and workloads change.

https://jira.whamcloud.com/browse/LU-11347

How Lustre can improve…
● The debug tooling is really rough

○ How does the average admin debug a performance problem?
■ Anyone that's good at this should remember your first time

■ Some of the client/server rpc/brw stats and the like are pretty straight forward, but as the problem
becomes more complex, now it’s setting debug masks, dumping, parsing

○ Lots of great info in debug dumps, but why no simple tools to help parse and make sense w/o reading the source
code and/or google + mailing list + WC Jira?

■ Is the first option to read the source code to decipher?

Cont. How Lustre can improve…
● The last few slides might sounded overly negative/harsh, but regardless our experience has been pretty positive. Very few other scale out

systems can do anything close to Lustre, and it’s entirely understandable that there will be bumps in the road.
● We put our most challenging workload (that would be a non-starter before DNE3) on Lustre, and it’s handled it very well in terms of

performance. Stability, etc will improve, especially when we’re running an LTS release, :-)
○ We also have a lot of simultaneous “things” running on the system, data syncs, scanning, production I/O, experimental I/O,

etc. The combination of everything wouldn’t work too well pre-DNE3, or we would be very bottlenecked on metadata
operations.

● Lustre gets our seal of approval!

Acknowledgements

Wouldn’t be possible without the hard work of many people at Whamcloud,
my coworkers at HRT, and our users!

Questions ?

Thanks for having us!

PS: We’re hiring: https://hudson-trading.com/careers/

https://hudson-trading.com/careers/

Appendix - getattr tracing
#!/usr/bin/env bash

#

output_root="/scratch/tmp/getattr_debug"

logfile="${output_root}/lctl_dk_getattr_$(date

+%Y-%m-%d_%H:%M).txt"

sleep_time=120

function reset_masks() {

 echo "resetting subsystem debug mask..."

 lctl set_param subsystem_debug=-1

 echo "resetting debug mask..."

 lctl set_param debug=0

}

mkdir -p "${output_root}"

reset_masks

lctl dk > /dev/null

echo "setting subsystem debug to mds..."

lctl set_param subsystem_debug=mds

echo "setting debug mask to inode..."

lctl set_param debug=inode

echo "sleeping for ${sleep_time} seconds ..."

sleep ${sleep_time}

echo "writing results to ${logfile} ..."

lctl dk > "${logfile}"

reset_masks

Run this on an MDS that is showing
more getattr operations than others.
Can be used to find “hot” directories.

After the debug data is written, grep
for ‘mdt_getattr_name_lock’, then post
process

Obviously expect to lose at least 10%
of overall performance while tracing

Appendix - mds_close tracing
Run this on an MDS that is showing
more mds_close operations than
others. Mds_close is when a client
“closes” a directory

After the debug data is written, grep
for ‘mdt_mfd_close’, then post process

Obviously expect to lose at least 10%
of overall performance while tracing

#!/usr/bin/env bash

#

output_root="/scratch/tmp/mdsclose_debug"

logfile="${output_root}/lctl_dk_mdsclose_$(date

+%Y-%m-%d_%H:%M).txt"

sleep_time=120

function reset_masks() {

 echo "resetting subsystem debug mask..."

 lctl set_param subsystem_debug=-1

 echo "resetting debug mask..."

 lctl set_param

debug=ioctl+neterror+warning+error+emerg+ha+config+cons

ole+lfsck debug_mb=128

}

mkdir -p "${output_root}"

reset_masks

lctl dk > /dev/null

echo "setting subsystem debug to mds ..."

lctl set_param subsystem_debug=mds

echo "setting debug mask to +dlmtrace+rpctrace+inode

..."

lctl set_param debug=+dlmtrace+rpctrace+inode

debug_mb=1024

echo "sleeping for ${sleep_time} seconds ..."

sleep ${sleep_time}

echo "writing results to ${logfile} ..."

lctl dk > "${logfile}"

reset_masks

