

Demonstration Milestone Completion for the
LFSCK 3 (MDT-MDT Consistency)

Sub-project 3.2 on the Lustre* File System FSCK
Project of the SFS-DEV-001 contract.

Revision History

Date Revision Author

15/03/09 Original R. Henwood

Table of Contents
Introduction .. 3
Correctness Test Coverage .. 3

Result .. 6
Single MDT Demonstration context ... 6

Measure performance of LFSCK 3 against multiple, consistent MDTs. .. 6
Result .. 7
Measure performance of LFSCK 3 against a multiple MDTs with inconsistencies. 7
Result .. 8
Impact of LFSCK on small file create performance on multiple MDT without inconsistencies 8
Result .. 9

Conclusion .. 9
Appendix A: OpenSFS Functional Test Cluster specification ... 10

Introduction
The following milestone completion document applies to Subproject 3.3 – LFSCK 3: MDT-MDT
Consistency. This project is recorded in Amendment No. 1 on the OpenSFS Lustre Development contract
SFS-DEV-001 agreed October 10, 2012.
The LFSCK 3: MDT-MDT Consistency code is functionally complete and recorded in the Implementation
Milestone. The purpose of this Milestone is to verify the code performs acceptably in a production-like
environment. In addition to completing all the Test Scenarios (demonstrated for the Implementation
Milestone,) LFSCK 3: MDT-MDT Consistency Performance has been measured as recorded below.
All tests were executed on the OpenSFS Functional Test Cluster. Details of the hardware are available in
Appendix A. For all the tests, Lustre software Master with LFSCK 3 patches was used.

Correctness Test Coverage
1. sanity-lfsck.sh

Test will be executed within Autotest and results automatically recorded in Maloo. Test will be
automatically completed, triggered by a Gerrit check-in with commit message "Test-
Parameters: envdefinitions=ENABLE_QUOTA=yes mdtcount=2
testlist=sanity-lfsck". All test cases must pass.

2. sanity-scrub.sh
Test will be executed within Autotest and results automatically recorded in Maloo. Test will be
automatically completed, triggered by a Gerrit check-in with commit message "Test-
Parameters: envdefinitions=ENABLE_QUOTA=yes testlist=sanity-
scrub". All test cases must pass.

3. Standard review tests
The standard collection of review tests (currently including sanity, sanityn, replay-single, conf-
sanity, recovery-small, replay-ost-single, insanity, sanity-quota, sanity-sec, lustre-rsync-test,
lnet-selftest, and mmp) will be executed within Autotest and results automatically recorded in
Maloo. Tests will be automatically completed, triggered by a Gerrit check-in. All test cases
should pass except for some known test failures unrelated to the LFSCK functionality.

The sanity-lfsck.sh and sanity-scrub.sh scripts are standard review tests that will be run and recorded. All
previous LFSCK functionality is also tested with these scripts. For the specific case of MDT-MDT
consistency, the test cases are:

• test 2e: The namespace LFSCK can detect inconsistent remote MDT-object's linkEA and repair it.

• test 6a: LFSCK can resume from the last checkpoint which is at the first-stage scanning.

• test 6b: LFSCK can resume from the last checkpoint which is at the second-stage scanning.

• test 7a: Non-stopped LFSCK can auto resume (the first-stage scanning) after the MDS restart.

• test 7b: Non-stopped LFSCK can auto resume (the second-stage scanning) after the MDS restart.

• test 9a: LFSCK speed is controllable during the first-stage scanning.

• test 9b: LFSCK speed is controllable during the second-stage scanning.

• test 10: During the LFSCK check/repair system inconsistency, the client can still access the
system normally.

• test 22a: Repair unmatched name entry and MDT-object pairs (1). The parent_A references the

child directory via some name entry, but the child directory back references another parent_B

via its ".." name entry. The parent_B does not exist. Then the namespace LFSCK will repair the

child directory's ".." name entry to reference the parent_A.

• test 22b: Repair unmatched name entry and MDT-object pairs (2). The parent_A references the

child directory via the name entry_B, but the child directory back references another parent_C

via its ".." name entry. The parent_C exists, but there is no the name entry_B under the

parent_C. Then the namespace LFSCK will repair the child directory's ".." name entry and its

linkEA to reference the parent_A.

• test 23a: Repair dangling name entry (1). The name entry is there, but the MDT-object for such

name entry does not exist. The namespace LFSCK should find out and repair the inconsistency as

required.

• test 23b: Repair dangling name entry (2). The object_A has multiple hard links, one of them

corresponding to the name entry_B. But there is something wrong for the name entry_B and

cause entry_B to references non-exist object_C. During the first-stage scanning, the LFSCK will

think the entry_B as dangling, and re-create the lost object_C. When the LFSCK comes to the

second-stage scanning, it will find that the former re-creating object_C is not proper, and will try

to replace the object_C with the real object_A.

• test 23c: Repair dangling name entry (3). The object_A has multiple hard links, one of them

corresponding to the name entry_B. But there is something wrong for the name entry_B and

cause entry_B to references non-exist object_C. During the first-stage scanning, the LFSCK will

think the entry_B as dangling, and re-create the lost object_C. And then others modified the re-

created object_C. When the LFSCK comes to the second-stage scanning, it will find that the

former re-creating object_C maybe wrong and try to replace the object_C with the real

object_A. But because object_C has been modified, so the LFSCK should NOT replace it to keep

the data.

• test 24: Repair multiple-referenced name entry. Two MDT-objects back reference the same

name entry via each own linkEA entry, but the name entry only references one MDT-object. The

namespace LFSCK will remove the linkEA entry for the MDT-object that is not recognised. If such

MDT-object has no other linkEA entry after the removing, then the LFSCK will add it as orphan

under the .lustre/lost+found/MDTxxxx/.

• test 25: Repair invalid file type. The file type in the name entry does not match the file

type claimed by the referenced object. The LFSCK will update the file type in the name entry.

• test 26a: Repair orphan MDT-object (1). The local name entry (back referenced by the MDT-

object) is lost. The namespace LFSCK will add the missing local name entry back to the normal

namespace.

• test 26b: Repair orphan MDT-object (2). The remote name entry (back referenced by the MDT-
object) is lost. The namespace LFSCK will add the missing remote name entry back to the normal
namespace.

• test 27a: Recreate the lost parent directory (1). The local parent (referenced by the MDT-object

linkEA) is lost. The namespace LFSCK will re-create the lost parent as orphan.

• test 27b: Recreate the lost parent directory (2). The remote parent (referenced by the MDT-
object linkEA) is lost. The namespace LFSCK will re-create the lost parent as orphan.

• test 29a: Repair invalid nlink count (1). The object's nlink attribute is larger than the object's

known name entries count. The LFSCK will repair the object's nlink attribute to match the known

name entries count.

• test 29b: Repair invalid nlink count (2). The object's nlink attribute is smaller than the object's

known name entries count. The LFSCK will repair the object's nlink attribute to match the known

name entries count.

• test 29c: Repair invalid nlink count (3). There are too many hard links to the object, and exceeds

the object's linkEA limitation, as to NOT all the known name entries will be recorded in the

linkEA. Under such case, the LFSCK should skip the nlink verification for this object.

• test 30: Recover the orphans from backend /lost+found. The namespace LFSCK will move the

orphans from backend /lost+found directory (that is only valid for ldiskfs based backend) to

normal client visible namespace or to the global visible ./lustre/lost+found/MDTxxxx/ directory.

• test 31a: Repair invalid name hash for striped directory (1). For the name entry under a striped

directory, if the name hash does not match the shard (the case that some name entry should be

inserted into other non-first shard, but inserted into the first shard by wrong), then the LFSCK

will repair the bad name entry.

• test 31b: Repair invalid name hash for striped directory (2). For the name entry under a striped

directory, if the name hash does not match the shard (the case that some name entry should be

inserted into other non-second shard, but inserted into the second shard by wrong), then the

LFSCK will repair the bad name entry.

• test 31c: Re-generate the lost master LMV EA for striped directory. For some reason, the master

MDT-object of the striped directory may lost its master LMV EA. If nobody created files under

the master directly after the master LMV EA lost, then the LFSCK should re-generate the master

LMV EA.

• test 31d: Set broken striped directory (modified after broken) as read-only. For some reason, the

master MDT-object of the striped directory may lost its master LMV EA. If somebody created

files under the master directly after the master LMV EA lost, then the LFSCK should NOT re-

generate the master LMV EA, instead, it should change the broken striped directory as read-only

to prevent further damage.

• test 31e: Re-generate the lost slave LMV EA for striped directory (1). For some reason,

the first slave MDT-object of the striped directory (that resides on the same MDT as the master

MDT-object) lost its slave LMV EA. The LFSCK should re-generate the slave LMV EA.

• test 31f: Re-generate the lost slave LMV EA for striped directory (2). For some reason, the non-
first slave MDT-object of the striped directory (that resides on different MDT as the master
MDT-object) lost its slave LMV EA. The LFSCK should re-generate the slave LMV EA.

• test 31g: Repair the corrupted slave LMV EA. For some reason, the stripe index in the slave LMV

EA is corrupted. The LFSCK should repair the slave LMV EA.

• test 31h: Repair the corrupted shard's name entry. For some reason, the shard's name entry in

the striped directory may be corrupted. The LFSCK should repair the bad shard's name entry.

Result
This test has been completed successfully and the results are recorded in the Implementation milestone:
http://wiki.opensfs.org/images/a/ad/LFSCK_MDT-MDTConsistency_Implementation.pdf

Single MDT Demonstration context
All tests require a populated directory on the file system. The directory will be created and populated
with the following properties:

4. Create 'L' test root directories. 'L' is equal to the MDT count {2,4,6,8}. The directory in the root
'dir-X' is located MDT-X.

5. For each MDT-X, under its test root directory dir-X, create M sub-directories, where M = { 20,
40, 60, 80 }, for a maximum of 8 MDTs * 80 sub-directories per MDT = 640 directory trees.

6. Under each sub-directory, create 90,000 single-striped regular files, 12,500 local directories,
1000 2-linked files, 500 remote directories, and 500 full striped directories, for a total of 104,500
files and subdirectories per directory. This will create a maximum total of 640 * 90000 ~= 58M
files and 640 * 13500 ~= 8.6M subdirectories.

Measure performance of LFSCK 3 against multiple, consistent MDTs.
This test provides a control benchmark for LFSCK 3 scanning. LFSCK 3 includes support for DNE striped
and remote directories consistency checking (also known as MDT-MDT consistency checking). This test
measures the scanning rate across multiple MDTs within striped directories is compares the result with
expectations. The aggregate LFSCK scanning performance is expected to scale linearly as additional
MDTs with objects are added to the filesystem.

Result

Checking a completely consistent file system performs favorably with previous results from the LFSCK
project. For example, the Demonstration phase of LFSCK 2 measured a similar test on a single MDT at
approximately at around 75,000 object a second. Here we see two MDTs at 150,000 object's a second,
twice the number for a single MDT. As the MDT count is increased, performance apparently approaches
linear scaling. This result is expected. As more MDTs are added, the count of high latency cross-MDT
look-ups increases. These look-ups take longer than a local lookup result in a small trend away from
linear scaling. A small reduction in performance is also apparently visible as MDT object count increases.
The small decline in performance with additional MDT-objects is expected. This is because of
experimental design: as the MDT object count increases the count of high latency cross-MDT look-up
increases.

Measure performance of LFSCK 3 against a multiple MDTs with inconsistencies.
This test scans the full filesystem on all MDTs to look for inconsistencies in the filesystem namespace,
including MDT-MDT inconsistencies. The intent of this test is to measure performance when the
filesystem needs to repair a large number of inconsistencies.

In for this test the filesystem has been intentionally corrupted during the filesystem population. The
specific corruption is a missing link xattr on each file in the filesystem. Inconsistencies are created
using the OBD_FAIL_LFSCK_NO_LINKEA fault injection hook. The link xattr stores the
backpointer from each inode to the directory name entry/entries for each link to the file. During
scanning, the LFSCK traversal checks for each name entry in each directory whether a corresponding
name entry exists in the link xattr. When LFSCK finds that no entry is present in the link xattr for
each directory entry, the link xattr is updated with a new {parent FID, filename} entry for
that directory entry. Files with multiple hard links will contain one entry in the link xattr for each link,
subject to space availability in the link xattr.

150310 150310 148582 147734

300600 296666 293648 288436

443117 440456 435384 436666

573167 576734 573824 565792

0

100000

200000

300000

400000

500000

600000

700000

20 40 60 80

LF
SC

K
pe

rf
or

m
an

ce
 (M

DT
-o

bj
ec

ts
/s

ec
)

MDT-object count (100K)

LFSCK routine striped directory
check (bundle) performance

2 MDTs

4 MDTs

6 MDTs

8 MDTs

Result

Checking an inconsistent file system performs favorably with results from the previous test of a
consistent file system. Performance increases as MDTs are added appear to follow a linear trend. As
larger file systems are tested, performance does not appear to slowdown. Measurements for this test
apparently show increased variability across all observation points, compared to the previous test. This
variation is expected as high-latency, typically random IO is needed to fix inconsistencies – as well as
network lookups to resolve correct data values.

Impact of LFSCK on small file create performance on multiple MDT without
inconsistencies

This test measures the additional load LFSCK 3 imposes on the MDS during a metadata-intensive
application like workload. Online LFSCK includes a feature that allows the scanning rate to be limited.
This feature is intended to enable an administrator to 'dial-back' the LFSCK scanning speed in a
production environment to reduce or avoid impact on client metadata performance. This test provides a
sweep of scanning rate measurements to give an administrator a feel for the performance change
expected by choosing to reduce (or increase) the LFSCK scanning rate.

14585

18099
19632

13098

32369

26811
24113

27452

49831

53433

37920
40390

47510

53837

43472

54957

0

10000

20000

30000

40000

50000

60000

20 40 60 80

LF
SC

K
pe

rf
or

m
an

ce
 (M

DT
-

ob
je

ct
s/

se
c)

MDT-object count (100K)

LFSCK repair LinkEA striped directory
check (bundle) performance

2 MDTs

4 MDTs

6 MDTs

8 MDTs

Result

Speed limit observations performs favorably with previous results from the LFSCK 2 project recorded in
the Demonstration phase of LFSCK 2 milestone. Variation across the observations is higher than
expected and apparently greater than observed during a similar test for LFSCK 2. Multiple observations
of each data point were made for this experiment. A high level of variation for between consecutive
observations was observed. It is thought that this variation could be the result of client-side FID
allocation.

Conclusion
LFSCK 3: MDT-MDT consistency has successfully completed both functional Acceptance and
Performance tests. The performance results recorded herein illustrate performance expectations are
met or exceeded during online operation and under load. In addition, LFSCK 3 has been shown to meet
or exceed expectations running in a multiple MDT environment.

69404
71360

67637

59991

65621

61199

0

10000

20000

30000

40000

50000

60000

70000

80000

20 40 60 80 100

cr
ea

te
 p

er
fo

rm
an

ce
 (M

DT
-o

bj
ec

ts
/s

ec
)

LFSCK speed limit (% of full LFSCK speed)

LFSCK impact on create performance

20

40

60

80

100

Appendix A: OpenSFS Functional Test Cluster specification
client

• (2) Intel E5620 2.4GHz Westmere (Total 8 Cores)
• (1) 64GB DDRIII 1333MHz ECC/REG - (8x8GB Modules Installed) * (1) On Board Dual

10/100/1000T Ports
• (8) Hot Swap Drive Bays for SATA/SAS
• (6) PCi-e Slots 8X
• (3) QDR 40GB QSFP to QSFP iB Cables
• (3) Mellanox QDR 40GB QSFP Single Port

OSS server
• (1) Intel E5620 2.4GHz Westmere (Total 8 Cores)
• (1) 32GB DDRIII 1333MHz ECC/REG - (8x8GB Modules Installed) * (1) On Board Dual

10/100/1000T Ports
• (1) On Board VGA
• (1) On Board IPMI 2.0 Via 3rd. Lan
• (1) 500GB SATA Enterprises 24x7
• (1) 40GB SSD OCZ SATA
• (8) Hot Swap Drive Bays for SATA/SAS
• (6) PCi-e Slots 8X
• (3) QDR 40GB QSFP to QSFP iB Cables
• (3) Mellanox QDR 40GB QSFP Single Port

MDS server
• (1) Intel E5620 2.4GHz Westmere (Total 8 Cores)
• (1) 32GB DDRIII 1333MHz ECC/REG - (8x8GB Modules Installed) * (1) On Board Dual

10/100/1000T Ports
• (1) On Board VGA
• (1) On Board IPMI 2.0 Via 3rd. Lan
• (1) 500GB SATA Enterprises 24x7
• (1) 40GB SSD OCZ SATA
• (8) Hot Swap Drive Bays for SATA/SAS
• (6) PCi-e Slots 8X
• (3) QDR 40GB QSFP to QSFP iB Cables
• (3) Mellanox QDR 40GB QSFP Single Port

