HPCS I/O

ORNL LCE Scalability Summit 19 May 2009

John Carrier HPCS I/O Lead Cray, Inc. carrier@cray.com

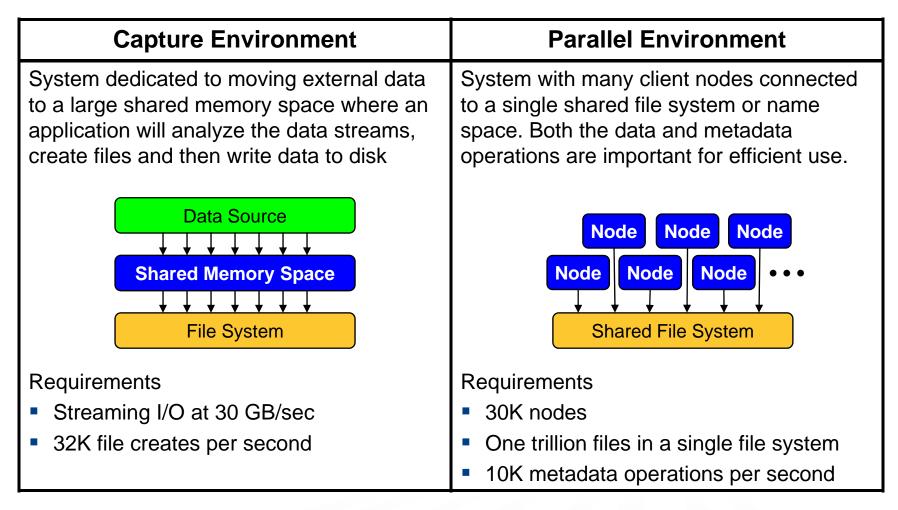
1

DARPA HPCS Program Award

In November 2006, DARPA awarded Cray and IBM separate \$250 million development contracts under its High Productivity Computing Systems (HPCS) program.

HPCS Goals:

Provide a new generation of economically viable high productivity computing systems for the national security and industrial user community in the 2010 timeframe


- Performance (time-to-solution): speed up critical applications by factors of 10 to 40
- Programmability (idea-to-first solution): reduce cost and time for developing application solutions
- Portability: insulate application software from system specifics
- Robustness: protect applications from hardware faults and system software errors

The result will be greater productivity (not just faster machines)

HPCS I/O Environments

DARPA)

HPCS I/O Scenarios

- 1. Single stream with large data blocks operating in half duplex mode
- 2. Single stream with large data blocks operating in full duplex mode
- 3. Multiple streams with large data blocks operating in full duplex mode
- 4. Extreme file creation rates

Capture Environment

Parallel Environment

- **5.** Checkpoint/restart with large I/O requests
- 6. Checkpoint/restart with small I/O requests
- 7. Checkpoint/restart Large file count per directory large I/Os
- 8. Checkpoint/restart large file count per directory small I/Os
- 9. Walking through directory trees
- **10.** Parallel walking through directory trees
- 11. Random stat() system call to files in the file system (one process)
- **12.** Random stat() system call to files in the file system (multiple proc's)
- **13.** Small block random I/O to multiple files
- 14. Small block random I/O to a single file
- DARPA requires that Cray demonstrate the scalability of its I/O solution using tests that execute these I/O scenarios
- Scaling performance, rather than absolute throughput, is important to all scenarios

DARPA)

Cray's HPCS I/O Goals

HPCS Goal	I/O Targets
Capacity	 1 trillion files per file system 10 billion files per directory 100 PB system capacity 1 PB single file size >30k client nodes 100,000 open files
Reliability	 End-to-end data integrity No performance impact during rebuild
Performance	 40,000 file creates/sec from a single client node 10,000 directory listings/sec aggregate 30GB/sec streaming data capture from a single client 1.5 TB/sec aggregate I/O – file per process and shared

And, demonstrate file and storage system scalability using the HPCS I/O Scenarios!

ORNL LCE HPCS I/O

Lustre and HPCS

- Cray partnered with Sun to meet our HPCS I/O Goals
 - Founded on the close working relationship Cray had with Cluster File Systems deploying Lustre on our XT platforms
 - HPCS extended the relationship for development of advanced features that are already impacting the Lustre roadmap

HPCS Goal	Lustre Solution
Capacity	 Lustre ZFS integration Clustered Metadata (CMD)
Reliability	 End-to-end check-summing integrated with ZFS ZFS rebuild performance improvements
Performance	 Clustered Metadata (CMD) IO Channel Bonding

HPCS & Lustre Scalability

- Our goal today is to present an overview of the Lustre HPCS File System Design
 - A draft of the overview document will be available soon
 - Final detailed designs of the new features will be available later this summer after Sun completes its design SOW with Cray
- Next Talks
 - "HPCS I/O Scenarios" Henry Newman, Instrumental, DARPA HPCS
 - "Lustre HPCS File System Design" Andreas Dilger, Sun, Lustre Principal Engineer

THANK YOU

ORNL LCE HPCS I/O

Cray Inc.

7