
Introduction to Lustre* 
Architecture
Lustre* systems and network administration

October 2017

* Other names and brands may be claimed as the property of others



Lustre*	is	an open-source,	distributed,	parallel	data	storage	platform	designed	for	massive	
scalability,	high-performance,	and	high-availability.	Popular	with	the	HPC	community,	Lustre	
is	used	to	support	the	most demanding	data-intensive	applications.	Lustre provides	
horizontally	scalable	IO	for	data	centres of	all	sizes,	and	is	deployed	alongside	some	of	the	
very	largest	supercomputers.	The	majority	of	the	top	100	fastest	computers,	as	measured	by	
top500.org,	use	Lustre	for	their	high	performance,	scalable	storage.

Lustre	file	systems	can	scale	from very	small	platforms	of	a	few	hundred	terabytes	up	to	large	
scale	platforms	with	hundreds	of	petabytes,	in	a	single,	POSIX-compliant,	name	space.	
Capacity	and	throughput	performance	scale	easily.

Lustre	runs	on	Linux-based	operating	systems	and	employs	a	client-server	network	
architecture.	Lustre	software	services are	implemented	entirely	within	the	Linux	kernel,	as	
loadable	modules.	Storage	is	provided	by	a	set	of	servers	that	can	scale	to	populations	
measuring	up	to	several	hundred	hosts.	Lustre	servers	for	a	single	file	system	instance	can,	in	
aggregate,	present	up	to	tens	of	petabytes	of	storage	to	thousands	of	compute	clients	
simultaneously,	and	deliver	more	than	a	terabyte-per-second	of	combined	throughput.

Lustre* is an open-source, 
object-based, distributed, 
parallel, clustered
file system
§ Designed for maximum performance at massive 

scale

§ Capable of Exascale capacities

§ Highest IO performance available for the world’s 
largest supercomputers

§ POSIX compliant

§ Efficient and cost effective

Lustre – Fast, Scalable Storage for HPC

3



Lustre’s	architecture	uses	distributed,	object-based	storage	managed	by	servers	and	accessed	
by	client	computers	using	an	efficient	network	protocol.	There	are	metadata	servers,	
responsible	for	storage	allocation,	and	managing	the	file	system	name	space,	and	object	
storage	servers,	responsible	for	the	data	content	itself.	A	file	in	Lustre	is	comprised	of	a	
metadata	inode object	and	one	or	more	data	objects.

Lustre	is	a	client-server,	parallel,	distributed,	network	file	system.	Servers	manage	the	
presentation	of	storage	to	a	network	of	clients,	and	write	data	sent	from	clients	to	persistent	
storage	targets.

There	are	three	different	classes	of	server:
• Management	server	provides	configuration	information,	file	system	registries
• Metadata	servers	record	file	system	namespace,	inodes.	The	metadata	servers	maintain	

the	file	system	index.
• Object	storage	servers	record	file	content	in	distributed	binary	objects.	A	single	file	is	

comprised	of	1	or	more	objects,	and	the	data	for	that	file	is	organized	in	stripes	across	the	
objects.	Objects	are	distributed	across	the	available	storage	targets.

Lustre	separates	metadata	(inode)	storage	from	block	data	storage	(file	content).	All	file	
metadata	operations	(creating	and	deleting	files,	allocating	data	objects,	managing	
permissions)	are	managed	by	the	metadata	servers.	Metadata	servers	provide	the	index	to	
the	file	system.	Metadata	is	stored	in	key-value	index	objects	that	store	file	system	inodes:	
file	and	directory	names,	permissions,	block	data	locations,	extended	attributes,	etc.

Lustre Scalable Storage

4

Object Storage
Targets (OSTs)

Metadata
Target (MDT0)

Management
Target (MGT)

Storage servers 
grouped

into failover pairs

Lustre Clients (1 – 100,000+)

High Performance Data Network
(Omni-Path, InfiniBand, Ethernet)

Management
Network

Object Storage
Servers

Object Storage
Servers

Management
& Metadata

Servers

Additional
Metadata
Servers

DNE Metadata
Targets (MDTi - MDTj)



Lustre	object	storage	servers	write	the	data	content	out	to	persistent	storage.	Object	servers	
can	be	written	to	concurrently,	and	individual	files	can	be	distributed	across	multiple	objects	
on	multiple	servers.	This	allows	very	large	files	to	be	created	and	accessed	in	parallel	by	
processes	distributed	across	a	network	of	computer	infrastructure.	Block	data	is stored	in	
binary	byte	array	data	objects	on	a	set	of	storage	targets. A	single	Lustre	"file"	can be	written	
to	multiple	objects	across	many	storage	targets.

In	addition	to	the	metadata and	object	data,	there	is	the	management	service,	which	is	used	
to	keep	track	of	servers,	clients,	storage	targets	and file	system	configuration	parameters.

Clients	aggregate	the	metadata	name	space	and	object	data	to	present	a	coherent	POSIX	file	
system	to	applications. Clients	do	not	access	storage	directly:	all	I/O	is	sent	over	a	network.	
The	Lustre	client	software	splits	IO	operations	into metadata	and	block	data, communicating	
with	the	appropriate	services	to	service	IO	transactions.	This	is	the	key	concept of	Lustre’s	
design	– separate	small,	random,	IOPS-intensive	metadata	traffic	from	the	large,	throughput-
intensive,	streaming	block	IO.



The	major	components	of	a	Lustre	file	system	cluster	are:

• MGS	+	MGT:	Management	service,	provides	a	registry	of	all	active	Lustre	servers	and	
clients,	and	stores	Lustre	configuration	information.	MGT	is	the	management	service	
storage	target	used	to	store	configuration	data.

• MDS	+	MDTs:Metadata	service,	provides	file	system	namespace	(the	file	system	index),	
storing	the	inodes for	a	file	system.	MDT	is	the	metadata	storage	target,	the	storage	
device	used	to	hold	metadata	information	persistently.	Multiple	MDS	and	MDTs	can	be	
added	to	provide	metadata	scaling.

• OSS	+	OSTs: Object	Storage	service,	provides	bulk	storage	of	data.	Files	can	be	written	in	
stripes	across	multiple	object	storage	targets	(OSTs).	Striping	delivers	scalable	
performance	and	capacity	for	files.	OSS	are	the	primary	scalable	service	unit	that	
determines	overall	aggregate	throughput	and	capacity	of	the	file	system.

• Clients: Lustre	clients	mount	each	Lustre	file	system	instance	using	the	Lustre	Network	
protocol	(LNet).	Presents	a	POSIX-compliant	file	system	to	the	OS.	Applications	use	
standard	POSIX	system	calls	for	Lustre	IO,	and	do	not	need	to	be	written	specifically	for	
Lustre.

• Network: Lustre	is	a	network-based	file	system,	all	IO	transactions	are	sent	using	network	
RPCs.	Clients	have	no	local	persistent	storage	and	are	often	diskless.	Supports	many	
different	network	technologies,	including	OPA,	IB,	Ethernet.

Lustre	Networking

Applications	do	not	run	directly	on	storage	servers:	all	application	I/O	is	transacted	over	a	

Lustre Building Blocks

High Performance Data Network
(InfiniBand, 10GbE)

Management
Network

Lustre Clients (1 – 100,000+)

Intel Manager for Lustre

Object Storage
Servers

Object Storage
Targets (OSTs)

Metadata
Servers

Metadata
Target (MDT)

Management
Target (MGT)

Storage servers grouped
into failover pairs

Building block for
Scalability.
Add more OSS 
building blocks to 
increase capacity
and throughput 
bandwidth.

Uniformity in building 
block configuration 
promotes consistency 
in performance and 
behavior as the file 
system grows.

Balance server IO 
with storage IO 
capability for best 
utilisation.

Metadata is stored
separately from 
file object data.
With DNE, multiple 
metadata servers 
can be added to 
increase 
namespace 
capacity and 
performance

5



network.	Lustre	network	I/O	is	transmitted	using	a	protocol	called	LNet,	derived	from	the	
Portals	network	programming	interface.	LNet	has	native	support	for	TCP/IP	networks	as	well	
as	RDMA	networks	such	as	Intel	Omni-Path	Architecture	(OPA)	and	InfiniBand.	LNet	supports	
heterogeneous	network	environments.	LNet	can	aggregate	IO	across	independent	interfaces,	
enabling	network	multipathing.	Servers	and	clients	can	be	multi-homed,	and	traffic	can	be	
routed	using	dedicated	machines	called	LNet	routers.	Lustre	network	(LNet)	routers	provide	a	
gateway	between	different	LNet	networks.	Multiple	routers	can	be	grouped	into	pools	to	
provide	performance	scalability	and	to	provide	multiple	routes	for	availability.

The	Lustre	network	protocol	is	connection-based:	end-points	maintain	shared,	coordinated	
state.	Servers	maintain	exports	for	each	active	connection	from	a	client	to	a	server	storage	
target,	and	clients	maintain	imports	as	an	inverse	of	server	exports.	Connections	are	per-
target	and	per-client:	if	a	server	exports	N targets	to	P clients,	there	will	be	(N *	P)	exports	on	
the	server,	and	each	client	will	have	N imports	from	that	server.	Clients	will	have	imports	for	
every	Lustre	storage	target	from	every	server	that	represents	the	file	system.

Most	Lustre	protocol	actions	are	initiated	by	clients.	The	most	common	activity	in	the	Lustre	
protocol	is	for	a	client	to	initiate	an	RPC	to	a	specific	target.	A	server	may	also	initiate	an	RPC	
to	the	target	on	another	server,	e.g.	an	MDS	RPC	to	the	MGS	for	configuration	data;	or	an	
RPC	from	MDS	to	an	OST	to	update	the	MDS’s	state	with	available	space	data.	Object	storage	
servers	never	communicate	with	other	object	storage	servers:	all	coordination	is	managed	via	
the	MDS	or	MGS.	OSS	do	not	initiate	connections	to	clients	or	to	an	MDS.	An	OSS	is	relatively	
passive:	it	waits	for	incoming	requests	from	either	an	MDS	or	Lustre	clients.

Lustre	and	Linux

The	core	of	Lustre	runs	in	the	Linux	kernel	on	both	servers	and	clients.	Lustre	servers	have	a	
choice	of	backend	storage	target	formats,	either	LDISKFS	(derived	from	EXT4),	or	ZFS	(ported	
from	OpenSolaris to	Linux).	Lustre	servers	using	LDISKFS	storage	require	patches	to	the	Linux	
kernel.	These	patches	are	to	improve	performance,	or	to	enable	instrumentation	useful	
during	the	automated	test	processes	in	Lustre’s	software	development	lifecycle.	The	list	of	
patches	continues	to	reduce	as	kernel	development	advances,	and	there	are	initiatives	
underway	to	completely	remove	customized	patching	of	the	Linux	kernel	for	Lustre	servers.	

Lustre	servers	using	ZFS	OSD	storage	and	Lustre	clients	do	not	require	patched	kernels.	The	
Lustre	client	software	is	being	merged	into	mainstream	Linux	kernel,	and	is	available	in	
kernel-staging.

Lustre	and	High	Availability

Service	availability	/	continuity	is	sustained	using	a	High	Availability	failover	resource	
management	model,	where	multiple	servers	are	connected	to	shared	storage	subsystems	
and	services	are	distributed	across	the	server	nodes.	Individual	storage	targets	are	managed	
as	active-passive	failover	resources,	and	multiple	resources	can	run	in	the	same	HA	
configuration	for	optimal	utilisation.	If	a	server	develops	a	fault,	then	any	Lustre	storage	



target	managed	by	the	failed	server	can	be	transferred	to	a	surviving	server	that	is	connected	
to	the	same	storage	array.	Failover	is	completely	application-transparent:	system	calls	are	
guaranteed	to	complete	across	failover	events.

In	order	to	ensure	that	failover	is	handled	seamlessly,	data	modifications	in	Lustre	are	
asynchronous	and	transactional.	The	client	software	maintains	a	transaction	log.	If	there	is	a	
server failure,	the	client	will	automatically	re-connect	to	the	failover	server	and	replay	
transactions	that	were	not	committed prior	to	the	failure.	Transaction	log	entries	removed	
once	the	client receives	confirmation	that	the	IO	has	been	committed	to	disk.

All	Lustre	server	types	(MGS,	MDS	and	OSS)	support	failover.	A	single	Lustre	file	system	
installation	will	usually	be	comprised	of	several	HA	clusters,	each	providing	a	discrete	set	of	
metadata or	object	services	that	is	a	subset	of	the	whole	file	system.	These	discrete	HA	
clusters	are	the	building	blocks	for	a	high-availability,	Lustre	parallel	distributed	file	system	
that	can	scale	to	tens	of	petabytes	in	capacity	and	to	more	than	one	terabyte-per-second	in	
aggregate	throughput	performance.

Building	block	patterns	can	vary,	which	is	a	reflection	the	flexibility	that	Lustre	affords	
integrators	and	administrators	when	designing	their	high	performance	storage	infrastructure.	
The	most	common	blueprint	employs	two	servers	joined	to	shared	storage	in	an	HA	clustered	
pair	topology.	While	HA	clusters	can	vary	in	the	number	of	servers,	a	two-node	configuration	
provides	the	greatest	overall	flexibility	as	it	represents	the	smallest	storage	building	block	
that	also	provides	high	availability.	Each	building	block	has	a	well-defined	capacity	and	
measured	throughput,	so	Lustre	file	systems	can	be	designed	in	terms	of	the	number	of	
building	blocks	that	are	required	to	meet	capacity	and	performance	objectives.

An	alternative	to	the	two-node	HA	building	block,	described	in Scalable	high	availability	for	
Lustre	with	Pacemaker (video),	was	presented	at LUG	2017 by	Christopher	Morrone.	This	is	a	
very	interesting	design	and	merits	consideration.

A	single	Lustre	file	system	can	scale	linearly	based	on	the	number	of	building	blocks.	The	
minimum	HA	configuration	for	Lustre	is	a	metadata	and	management	building	block	that	
provides	the	MDS	and	MGS	services,	plus	a	single	object	storage	building	block	for	the	OSS	
services.	Using	these	basic	units,	one	can	create	file	systems	with	hundreds	of	OSSs	as	well	as	
several	MDSs,	using	HA	building	blocks	to	provide	a	reliable,	high-performance	platform.



The	values	here	are	intended	to	reflect	the	potential	scale	of	Lustre	installations.	The	largest	
Lustre	installations	used	in	production	today	are	measured	in	10’s	of	petabytes,	with	
projections	for	100’s	of	petabytes	within	2	years.	Typical	Lustre	system	deployments	range	in	
capacity	from	1	– 60PB,	in	configurations	that	can	vary	widely,	depending	on	workload	
requirements.

The	values	depicted	for	ZFS	file	system	and	file	system	size	are	theoretical,	and	in	fact	
represent	a	conservative	projection	of	the	scalability	of	ZFS	with	Lustre.	If	one	were	to	make	
a	projection	of	ZFS	scalability	using	the	ZFS	file	system’s	own	theoretical	values,	the	numbers	
are	so	large	as	to	be	effectively	meaningless	in	any	useful	assessment	of	capability.

Lustre Storage Scalability

Value using LDISKFS backend Value using ZFS backend Notes

Maximum stripe count 2000 2000 Limit is 160 for ldiskfs if "ea_inode" 
feature is not enabled on MDT

Maximum stripe size < 4GB < 4GB

Minimum stripe size 64KB 64KB

Maximum object size 16TB 256TB

Maximum file size 31.25PB 512PB*

Maximum file system size 512PB 8EB*

Maximum number of files or 
subdirectories per directory

10M for 48-byte filenames. 5M for 
128-byte filenames.

248

Maximum number of files in the 
file system

4 billion per MDT 256 trillion per MDT

Maximum filename length 255 bytes 255 bytes

Maximum pathname length 4096 bytes 4096 bytes Limited by Linux VFS

6



From	its	inception,	Lustre	has	been	designed	to	enable	data	storage	to	move	beyond	the
bottlenecks	imposed	by	limitations	in	hardware.

Lustre	is	a	distributed network file	system	and	shares	some	of	the	characteristics	common	to	
other	network	storage	technology,	namely	that	clients	transact	IO	over	a	network	and	do	not	
write	data	locally,	the	servers	support	concurrency,	and	the	data	is	presented	as	a	single	
coherent	namespace.

Where	Lustre	differentiates	itself from	other	network	file	systems,	such	as	NFS	or	SMB,	is	in	
its	ability	to	seamlessly	scale	both	capacity	and	performance	linearly	to	meet	the	demands	of	
data-intensive	applications	with	minimal	additional administrative	overhead.	To	increase	
capacity	and	throughput,	add	more	servers	with	the	required	storage.	Lustre	will	
automatically	incorporate	new	servers	and	storage,	and	the	clients	will	leverage	the	new	
capacity	automatically.	New	capacity	is	automatically	incorporated	into	the	pool	of	available	
storage.

Contrast	this	to	traditional	NFS	deployments	where	capacity	is	often	carved	up	into	vertical	
silos	based	on	project	or	department,	and	presented	to	computers	using	complex	automount
maps	that	need	to	be	maintained.	Available	capacity	is	often	isolated	and	it	is	difficult	to	
balance	utilisation,	while	performance	is	constrained	to	the	capability	of	a	single	machine.

Traditional Network File Systems vs Lustre

Distributed client, central server, e.g. NFS, SMB

Performance and scalability is limited by single server bandwidth

All clients use a single network path to one server

Adding a new storage server creates a separate file system

Storage becomes fragmented into silos

Distributed client, distributed servers (Lustre)

Scalable Metadata and Object Storage services

Scale performance and capacity linearly as client population grows

Client network scalability is not limited by the file system

All clients can access all storage servers simultaneously and in parallel

Single coherent name space across all servers. Can have hundreds of 
network storage servers in a single file system

Lustre Clients (1 – 100,000+)

Adding a 2nd server 
can provide HA but
does not increase 
performance

Bottleneck

SMB / NFS Clients

Building block for
Scalability. Add 
storage servers to 
increase capacity 
and performance

7



Hierarchical	Storage	Management	(HSM)	is	a	collection	of	technologies	and	processes	
designed	to	provide	a	cost-effective	storage	platform	that	balances	performance,	capacity	
and	long	term	retention	(archival).	Storage	systems	are	organized	into	tiers,	where	the	
highest-performance	tier	is	on	the	shortest	path	to	the	systems	where	applications	are	
running;	this	is	where	the	most	active,	or	hottest,	data	is	generated	and	consumed.	As	the	
high-performance	tier	fills,	data	that	is	no	longer	being	actively	used	(cooler	data)	will	be	
migrated	to	higher-capacity	and	generally	lower-cost-per-terabyte	storage	platforms	for	
long-term	retention.	Data	migration	should	ideally	be	managed	automatically	and	
transparently	to	the	end	user.

Lustre	provides	a	framework	for	incorporating	an	HSM	tiered	storage	implementation.	Lustre	
fulfills	the	high	performance	storage	tier	requirement.	When	a	file	is	created,	a	replica	can	be	
made	on	the	associated	HSM	archive	tier,	so	that	two	copies	of	the	file	exist.	As	changes	are	
made	to	the	file,	these	are	replicated	onto	the	archive	copy	as	well.	The	process	of	replicating	
data	between	Lustre	and	the	archive	is	asynchronous,	so	there	will	be	a	delay	in	data	
generated	on	Lustre	being	reflected	in	the	archive	tier.	As	the	available	capacity	is	gradually	
consumed	on	the	Lustre	tier,	the	older,	least	frequently	used	files	are	"released"	from	Lustre,	
meaning	that	the	local	copy	is	deleted	from	Lustre	and	replaced	with	a	reference	that	points	
to	the	archive	copy.	Applications	are	not	aware	of	the	locality	of	a	file:	from	the	application’s	
perspective,	files	are	accessed	using	the	same	system	calls.	Crucially,	applications	do	not	
need	to	be	re-written	in	order	to	work	with	data	stored	on	an	HSM	system.	If	a	system	call	is	
made	to	open	a	file	that	has	been	released	(i.e.	a	file	whose	contents	are	located	on	the	
archive	tier	only),	the	HSM	software	automatically	dispatches	a	request	to	retrieve	the	file	
from	the	archive	and	restore	it	to	the	Lustre	file	system.	This	may	be	noticeable	in	the	form	

Lustre HSM System Architecture

Management
Network

Intel Manager
for Lustre

Object Storage
Servers

Object Storage
Targets (OSTs)

Metadata
Servers

Metadata
Target (MDT)

Management
Target (MGT)

Storage servers grouped
into failover pairs

Archive

HSM AgentsPolicy Engine

Data Network

Lustre Clients (1 – 100,000+)

8



of	a	delay,	but	is	otherwise	transparent	to	the	application.	

The	diagram	provides	an	overview	of	the	hardware	architecture	for	a	typical	Lustre	+	HSM	
file	system.	The	metadata	servers	have	an	additional	process	called	the	HSM	Coordinator	
that	accepts,	queues	and	dispatches	HSM	requests	(this	may	also	be	referred	to	this	as	the	
MDT	Coordinator	since	the	process	runs	on	the metadata	server	– MDS).	HSM	commands	are	
submitted	from	Lustre	clients,	either	through	the	command	line	or	through	a	special-purpose	
third-party	application	known	as	a	Policy	Engine.	The	Policy	Engine	software	makes	use	of	
Lustre's	HSM	API	to	interact	with	the	HSM	Coordinator.	The	HSM	platform	also	requires	an	
interface	between	the	Lustre	file	system	tier	and	the	archive	tier.	Servers	called	HSM	Agents	
(also	known	as	Copytool servers)	provide	this	interface.	

Lustre provides	reference	implementations	of	the	HSM	Copytool.	The	copytool supplied	with	
Lustre	uses	POSIX	interfaces	to	copy	data	to	and	from	the	archive.	While	this	implementation	
of	copytool is	completely	functional,	it	has	been	created	principally	as	an	example	of	how	to	
develop	copytools for	other	archive	types,	which	may	use	different	APIs.	The	copytool
included	with	the	Lustre	software	is	intended	as	a	reference	implementation,	and	while	it	is	
stable,	it	is	not	a	high- performance	tool	and	for	that	reason,	may	not	be	suitable	for	a	
production	environment.	There are	also	several	3rd party	copytools available,	supporting	a	
range	of	archive	storage	systems.

The	Policy	Engine	most	commonly	associated with	Lustre	is	called	Robinhood.	Robinhood is	
an	open-source	application	with	support	for	HSM.	Robinhood tracks	changes	to	the	file	
system,	and	records	this	information	persistently	in	a	relational	database.	Robinhood also	
analyses	the	database	and	takes	action	based	on	a	set	of	rules	(called	policies)	defined	by	the	
file	system's	maintainers.	These	rules	govern	how	files	and	directories	will	be	managed	by	the	
HSM	system,	and	the	conditions	under	which	to	take	an	action.	Among	other	things,	policies	
in	Robinhood determine	how	often	to	copy	files	to	the	archive	tier,	and	the	criteria	for	
purging	files	from	the	Lustre	tier	in	order	to	release	capacity	for	new	data.	



Lustre	was	originally	designed	for	HPC	applications	running	on	large	clusters	of	Linux-based	
servers	and	can	present	extremely	high-capacity	file	systems	with	high	performance.		As	it	
has	matured,	Lustre	has	found	roles	in	IT	system	infrastructure,	and	has	become	increasingly	
relevant	to	commercial	enterprises	as	they	diversify	their	workloads	and	invest	in	massively-
parallel	software	applications.

This	broadening	of	scope	for	high-performance	computing,	coupled	with	increasing	data	
management	expectations,	is	placing	new	demands	on	the	technologies	that	underpin	high-
performance	storage	systems,	including	Lustre	file	systems.	As	a	result,	storage	
administrators	are	being	asked	to	provide	access	to	data	held	on	Lustre	file	systems	from	a	
wide	range	of	client	devices	and	operating	systems	that	are	not	normally	supported	by	
Lustre.

To	address	this	need,	a	bridge	is	required	between	the	Linux-based	Lustre	platform	and	other	
operating	systems.	The	Samba	project	was	originally	created	to	fulfill	this	function	for	
standalone	UNIX	file	servers.	Samba	is	a	project	that	implements	the	Server	Message	Block	
(SMB)	protocol	originally	developed	by	IBM	and	popularized	by	Microsoft	Windows	operating	
systems.	SMB	is	common	throughout	computer	networks.	Samba	provides	computers	with	
network-based	access	to	files	held	on	UNIX	and	Linux	servers.	

The	Samba	project	developers	also	created	a	clustered	software	framework	named	Clustered	
Trivial	Database	(CTDB).	CTDB	is	a	network-based	cluster	framework	and	clustered	database	
platform	combined.	CTDB	is	derived	from	the	TDB	database,	which	was	originally	developed	
for	use	by	the	Samba	project.	CTDB	allows	multiple	Samba	servers	to	safely	and	seamlessly	

Lustre SMB Gateway System Architecture

Management
Network

Object Storage
Servers

Object Storage
Targets (OSTs)

Metadata
Servers

Metadata
Target (MDT)

Management
Target (MGT)

Storage servers grouped
into failover pairs

Data Network

Lustre Clients (1 – 100,000+)

CTDB Cluster (Samba)

CTDB  Private Network

SMB Clients

Public Network

Intel Manager
for Lustre

9



run	in	a	cooperative	cluster	to	serve	data	held	on	parallel	file	systems	such	as	Lustre.	CTDB	
provides	a	cluster	framework	and	cluster-aware	database	platform	that	allows	several	Samba	
instances	running	on	different	hosts	to	run	in	parallel	as	part	of	a	scalable,	distributed	service	
on	top	of	a	parallel	file	system.	Each	instance	of	Samba	serves	the	same	data	on	the	same	file	
system,	using	the	CTDB	framework	to	manage	coherency	and	locking.	

Samba,	running	on	a	CTDB	cluster	that	is	backed	by	Lustre,	provides	computer	systems	that	
don’t	have	native	support	for	Lustre	with	network	access	to	the	data	held	on	a	Lustre	file	
system.	By	running	Samba	in	a	CTDB	cluster	backed	by	Lustre,	one	can	create	a	parallel	SMB	
service	running	across	multiple	hosts	that	can	scale	to	meet	demand.	



Server Overview



Each	Lustre	file	system	comprises,	at	a	minimum:

• 1	Management	service	(MGS),	with	corresponding	Management	Target	(MGT)	storage
• 1	or	more	Metadata	service	(MDS)	with	Metadata	Target	(MDT)	storage
• 1	or	more	Object	storage	service	(OSS),	with	Object	Storage	Target	(OST)	storage

For	High	Availability,	the	minimum	working	configuration	is:

• 2	Metadata	servers,	running	MGS	and	MDS	in	failover	configuration
• MGS	service	on	one	node,	MDS	service	on	the	other	node
• Shared	storage	for	the	MGT	and	MDT	volumes

• 2	Object	storage	servers,	running	multiple	OSTs	in	failover	configuration
• Shared	storage	for	the	OST	volumes
• All	OSTs	evenly	balanced	across	the	OSS	servers

Management	Service	and	Target

The	MGS	is	a	global	resource	that	can	be	associated	with	one	or	more	Lustre	file	systems.	It	
acts	as	a	global	registry	for	configuration	information	and	service	state.	It	does	not	
participate	in	file	system	operations,	other	than	to	coordinate	the	distribution	of	
configuration	information.

• Provides	configuration	information	for	Lustre	file	systems
• All	Lustre	components	register	with	MGS	on	startup
• Clients	retrieve	information	on	mount

Lustre File System Architecture – Server Overview
Object Storage
Targets (OSTs)

Metadata
Target (MDT0)

Management
Target (MGT)

Storage servers 
grouped

into failover pairs

Lustre Clients (1 – 100,000+)

High Performance Data Network
(Omni-Path, InfiniBand, Ethernet)

Management
Network

Object Storage
Servers

Object Storage
Servers

Management
& Metadata

Servers

Additional
Metadata
Servers

DNE Metadata
Targets (MDTi - MDTj)

12



• Configuration	information	is	stored	on	a	storage	target	called	the	MGT
• There	is	usually	only	one	MGT	for	a	given	network,	and	a	Lustre	file	system	will	

register	with	exactly	one	MGS

Metadata	Service	and	Targets

The	MDS	serves	the	metadata	for	a	file	system.	Metadata	is	stored	on	a	storage	target	called	
the	MDT.	The	MDS	is	responsible	for	the	file	system	name	space	(the	files	and	directories),	
and	file	layout	allocation.	It	is	the	MDS	that	determines	where	files	will	be	stored	in	the	pool	
of	object	storage.	Each	Lustre	file	system	must	have	at	least	one	MDT	served	by	an	MDS,	but	
there	can	be	many	MDTs	on	a	server.	The	MDS	is	a	scalable	resource:	using	a	feature	called	
Distributed	Namespace,	a	single	file	system	can	have	metadata	stored	across	many	MDTs.	
The	MGS	and	MDS	are	usually	paired	into	a	high	availability	server	configuration.

• Records	and	presents	the	file	system	name	space
• Responsible	for	defining	the	file	layout	(location	of	data	objects)
• Scalable	resource	(DNE)

Object	Storage	Service	(OSS)	and	Targets

• File	content,	stored	as	objects
• Files	may	be	striped	across	multiple	targets
• Massively	Scalable

Object	Storage	Devices	(OSDs)

Lustre	targets	run	on	a	local	file	system	on	Lustre	servers,	the	generic	term	for	which	is	an	
“object	storage	device”,	or	OSD.	Lustre	supports	two	kinds	of	OSD	file	systems	for	back-end	
storage:
• LDISKFS,	a	modified	version	of	EXT4.	This	is	the	original	persistent	storage	device	layer	for	

Lustre.	Several	features	originally	developed	for	Lustre	LDISKFS	have	been	incorporated	
into	the	EXT	file	system.

• ZFS,	based	on	OpenZFS	implementation	from	the	ZFS	on	Linux	project.	ZFS	is	combines	a	
volume	manager	and	a	file	system	into	a	single,	coherent	storage	platform.	ZFS	is	an	
extremely	scalable	file	system	and	is	well-suited	for	high-density	storage	systems.	ZFS	
provides	integrated	volume	management	capabilities,	RAID	protection,	data	integrity	
protection,	snapshots

Lustre*	targets	can	be	different	types	across	servers	in	a	single	file	system.	Hybrid	
LDISKFS/ZFS	file	systems	are	possible,	for	example	combining	LDISKFS	MDTs	and	ZFS	OSTs,	
but	generally	it	is	recommended	that	for	simplicity	of	administration,	a	file	system	uses	a	
single	OSD	type.	Lustre	Clients	are	unaffected	by	the	choice	of	OSD	file	system.

For	the	most	part,	a	Lustre	storage	target	is	just	a	regular	file	system.	The	on-disk	format	
comprises	a	few	special	directories	for	configuration	files,	etc.	The	Lustre	ZFS	OSD	actually	



bypasses	the	ZPL	(ZFS	POSIX	Layer)	to	improve	performance,	but	the	on-disk	format	still	
maintains	compatibility	with	the	ZPL.

A	storage	target	can	be	created	on	almost	any	Linux	block	device.	Using	a	whole	block	device	
or	ZFS	pool	is	strongly preferred,	but	OSDs	can	be	created	on	disk-partitions.	LDISKFS	OSDs
will	run	on	LVM. While	not	commonly	used	for	the	OSTs,	LVM	is	useful	for	taking	snapshots	
and making	backups	of	the	MDT: the	MDT	is	the	file	system	index,	without	which	none	of	the	
data	in	Lustre	is	accessible,	so	it	makes	sense	to	regularly	make	a	copy	in	case	of	a	
catastrophic	hardware	failure.	While	in	principal,	a	device	backup	of	the	OSTs	might	be	
useful,	the	sheer	scale	of	the	task	makes	it	impractical.	Moreover,	backups	from	the	user-
space	Lustre	clients	is	typically	more	effective	and	can	target	operationally	critical	data.

An	alternative	way	to	look	at the	problem	is	as	follows:	catastrophic	loss	of	a	single	OST	
means	that	some of	the	data	in	the	file	system	may	be	lost;	whereas	catastrophic	loss	of	the	
root	MDT	means	that	all of	the	data	is	lost.



Metadata	Server	Reference	Design

The	diagram	above	represents	a	typical	design	for	a	high-availability	metadata	server	cluster.	
It	comprises	two	server	machines,	each	with	three	network	interfaces,	and	a	storage	array	
that	is	connected	to	each	machine.

The	high	performance	data	network	is	used	for	Lustre	and	other	application	traffic.	Common	
transports	for	the	data	network	are	Intel	Omni-path,	InfiniBand	or	10/40/100Gb	Ethernet.	
The	management	network	is	used	for	systems	management,	monitoring	and	alerts	traffic	and	
to	provide	access	to	baseband	management	controllers	(BMCs)	for	servers	and	storage.	The	
dedicated	secondary	cluster	network	is	a	point-to-point,	or	cross-over	cable,	used	exclusively	
for	cluster	communications,	usually	used	in	conjunction	with	the	management	network	to	
ensure	redundancy	in	the	cluster	communications	framework.

Storage	can	be	either	a	JBOD	or	an	array	with	an	integrated	RAID	controller.

The	MDS	has	a	high	performance	shared	storage	target,	called	the	MDT	(Metadata	Target).	
Metadata	performance	is	dependent	upon	fast	storage	LUNs	with	high	IOPs	characteristics.	
Metadata	IO	comprises	very	large	rates	of	small,	random	transactions,	and	storage	should	be	
designed	accordingly.	Flash-based	storage	is	an	ideal	medium	to	complement	the	metadata	
workload.	Striped	mirrors	or	RAID	1+0	arrangements	are	typical,	and	will	yield	the	best	
overall	performance	while	ensuring	protection	against	hardware	failure.	Storage	is	sized	for	
metadata	IO	performance,	and	a	projection	of	the	expected	maximum	number	of	inodes.

MGS and MGS Reference Design

MDS2

HBA

HBA

Net

Net

Net

MDS1

HBA

HBA

Net

Net

Net

M
anagem

ent

Lustre
/ D

ata

MGT (RAID 1)

Spare

OS
RAID 1

MDT0 (RAID 10)

Ctlr /
Exp A
Ctlr / 
Exp B

Cluster
Comms

14



The	MGS	has	a	shared	storage	target,	called	the	MGT	(Management	Target).	MGT	storage	
requirements	are	very	small,	typically	100MB.	When	a	JBOD	configuration	is	used,	e.g.	for	
ZFS-based	storage,	the	MGT	should	be	comprised	of	a	single	mirror	of	two	drives	– avoid	the	
temptation	to	create	a	single	ZFS	pool	that	contains	both	an	MGT	and	MDT	dataset	– this	
severely	compromises	the	flexibility	of	managing	resources	in	an	HA	cluster	and	creates	an	
unnecessary	colocation	dependency.	Moreover,	when	a	failure	event	occurs,	both	MGT	and	
MDT	resources	will	need	to	failover	at	the	same	time,	which	will	disable	the	imperative	
recovery	feature	in	Lustre	and	increase	the	time	it	takes	services	to	resume	operation.	Some	
intelligent	storage	arrays	provide	more	sophisticated	ways	to	carve	out	storage,	allowing	
more	fine-grained	control	and	enabling	a	larger	proportion	of	the	available	storage	to	be	
allocated	to	the	MDT.	The	core	requirement	is	to	create	a	storage	target	that	comprises	a	
mirror	to	provide	redundancy.

The	use	of	spares	is	entirely	at	the	discretion	of	the	system	designer.	Note	that	when	
designing	for	ZFS,	the	use	of	the	hot-spare	feature	is	not	recommended	for	shared	storage	
failover	configurations.	Instead,	if	spare	a	required,	use	them	as		warm-standby	devices	(i.e.	
present	in	the	chassis	but	not	incorporated	into	the	ZFS	configuration	directly).	Warm	
standby’s	will	require	operator	intervention	to	activate	as	a	replacement	when	a	drive	fails,	
but	will	avoid	issues	with	the	hot	spare	capability	in	ZFS	when	used	in	HA.	For	example,	any	
pool	that	is	sharing	a	global	spare	cannot	be	exported	while	the	spare	is	being	used;	and	
there	is	no	arbitration	or	coordination	of	spare	allocation	across	nodes	– if	two	nodes	make	a	
simultaneous	attempt	to	allocate	the	spare,	there	is	a	race	to	acquire	the	device,	which	
makes	the	process	unpredictable.

One	pair	of	MDS	servers	can	host	multiple	MDTs	but	only	one	MGT.

MGS

• Manages	filesystem	configuration	and	tunable	changes,	for	clients,	servers	and	targets.
• Registration	point:	new	server	and	client	components	register	with	MGS	during	startup.
• Servers	and	clients	obtain	Lustre	configuration	from	MGS	during	mount	and	configuration	

updates	from	MGS	after	mount.	Think	of	it	as	a	Directory	service	and	global	registry.
• One	per	site	/	per	file	system
• Each	Lustre	file	system	needs	to	register	with	an	MGS
• A	MGS	can	serve	one	or	more	Lustre	file	systems
• MGT	stores	global	configuration	information,	provided	upon	request
• The	MGT	should	be	not	co-located	on	the	same	volume	as	the	metadata	target	(MDT),	as	

the	imperative	recovery	capability	(critical,	high	speed	recovery	mechanism)	of	Lustre	will	
be	disabled	if	MDT	and	MGT	are	co-located

• Only	one	MGS	service	can	run	on	a	host:	cannot	mount	multiple	MGT	volumes	on	a	single	
host

• Storage	requirements	are	minimal	(approximately	100-200	MB).	A	single	mirrored	disk	
configuration	is	sufficient.

• Can	run	stand-alone	but	it	is	usually	grouped	with	the	root	MDS	(MDT0)	of	a	file	system	in	
an	HA	failover	cluster.



MDS

• One	or	more	MDS	per	file	system
• Significant	multi-threaded	CPU	use
• Simultaneous	access	from	many	clients
• Maintains	the	metadata,	which	includes information	seen	via	stat()	– owner,	group,	

filename,	links,	ctime,	mtime,	etc.,	and	extended	attributes, such	as	the	File	Identifier	
(FID)†,	Mapping	of	FID,	OSTs	and	Object	ID’s, Pool	Membership,	ACLs,	etc.

• Metadata	is	stored	on	one	or	more	MDTs
• An	MDT	stores	metadata	for	exactly	one	Lustre	file	system
• Many	MDTs	can	serve	a	single	file	system,	by	using	the	Distributed	Namespace	(DNE)	

feature
• Maximum	of	4096	MDTs	per	Lustre	file	system
• File	system	is	unavailable	if	MDT	is	unavailable
• MDT	size	is	based	on	the	amount	of	files	expected	in	file	system

• Maximum	of	4B	inodes per	MDT	for	ldiskfs MDT	storage
• For	ZFS	MDTs,	inode capacity	is	limited	only	by	the	capacity	of	the	storage	

volume

†	FIDs are	described	in	a	later	section.



The	diagram	above	represents	a	typical	design	for	a	high-availability	object	storage	server	
cluster.	It	comprises	two	server	machines,	each	with	three	network	interfaces,	and	a	storage	
array	that	is	connected	to	each	machine.

The	high	performance	data	network	is	used	for	Lustre	and	other	application	traffic.	Common	
transports	for	the	data	network	are	Intel	Omni-path,	InfiniBand	or	10/40/100Gb	Ethernet.	
The	management	network	is	used	for	systems	management,	monitoring	and	alerts	traffic	and	
to	provide	access	to	baseband	management	controllers	(BMCs)	for	servers	and	storage.	The	
dedicated	secondary	cluster	network	is	a	point-to-point,	or	cross-over	cable,	used	exclusively	
for	cluster	communications,	usually	used	in	conjunction	with	the	management	network	to	
ensure	redundancy	in	the	cluster	communications	framework.

Storage	can	be	either	a	JBOD	or	an	array	with	an	integrated	RAID	controller.

The	Object	storage	servers	provide	the		scalable	bulk	data	storage	for	Lustre.	IO	transactions	
are	typically	large	with	correspondingly	large	RPC	payloads	and	require	high	throughput	
bandwidth.	Object	storage	servers	move	data	between	block	storage	devices	and	the	
network.	The	OSS	is	used	to	transfer	data	held	on	devices	called	Object	Storage	Targets	
(OSTs)	to	the	Lustre	clients,	and	manages	read	/	write	calls.	Typically	there	are	many	Object	
Storage	Servers	for	a	single	Lustre	file	system,	and	represent	Lustre’s	core	scalable	unit:	add	
more	OSS	servers	to	increase	capacity	and	throughput	performance.	A	minimum	of	2	servers	
is	required	for	high	availability.	The	aggregate	throughput	of	the	file	system	is	the	sum	of	the	
throughput	of	each	individual	OSS	and	the	total	storage	capacity	of	the	Lustre	file	system	is	
the	sum	of	the	capacities	of	all	OSTs.

OSS Reference Design
High density storage chassis based on 60 disks per tray, no spares

C
ontroller /

E
xpander A

C
ontroller /

E
xpander B

C
ontroller /

E
xpander A

C
ontroller /

E
xpander B

OST0

OST1

OST2

OST3

OST4

OST5

OST6

OST7

OST8

OST9

OST10

OST11

OSS1

Net

Net

Net

HBA
HBA

HBA
HBA

OSS2

Net

Net

Net

HBA
HBA

HBA
HBA

M
anagem

ent

Lustre
/ D

ata

OS
RAID 1

Cluster
Comms

16



Each	OSS	may	have	several	shared	Object	Storage	Targets	(OSTs),	normally	configured	in	a	
RAID	6	or	equivalent	parity-based	redundant	storage	configuration.	This	provides	the	best	
balance	of	capacity,	performance	and	resilience.	The width,	or	number	of	disks,	in	each	RAID	
group	should	be	determined	based	on	the	specific	capacity	or	performance	requirements	for	
a	given	installation.	The	historical	precedent	for	RAID	is	to	always	create	RAID	groups	that	
have	N+P	disks	per	group,	where	N	is	a	power	of	2	and	P	is	the	amount	of	parity.	For	
example,	for	RAID	6,	one	might	have	ten	disks:	N=8	and	P=2	(8+2).	In	many	modern	arrays,	
this	rule	may	in	fact	be	redundant,	and	in	the	case	of	ZFS,	the	rule	has	been	demonstrated	to	
be	largely	irrelevant.	This	is	especially	true	when	compression	is	enabled	on	ZFS,	since	the	
core	premise	of	using	a	power	of	2	for	the	layout	was	to	ensure	aligned	writes	for	small	block	
sizes	that	are	also	a	power	of	2,	and	also	to	support	the	idea	of	a	full	stripe	write	on	RAID6	of	
1MB	without	any	read-modify-write	overheads.	These	considerations	do	not	generally	apply	
to	ZFS.	Furthermore,	when	designing	solutions	for	ZFS,	most	workloads	benefit	from	enabling	
compression.	When	compression	is	enabled,	the	block	sizes	will	not	be		a	power	of	two,	
regardless	of	the	layout,	and	workloads	will	benefit	more	from	enabling	compression	in	ZFS	
than	from	RAIDZ	sizing.	For	more	detailed	information:

https://www.delphix.com/blog/delphix-engineering/zfs-raidz-stripe-width-or-how-i-learned-
stop-worrying-and-love-raidz

For	hardware	RAID solutions,	RAID	6	(8+2)	is	still	one the most	common	configurations, but	
again,	it	is	advised	not	to	follow	this	rule	blindly.	Experiment	with	different	layouts	and	try	to	
maximise the	overall	capacity	utilisation of	the	storage	system.

An	OSS	pair	may	have	more	than	one	storage	array.	Two	or	four	arrays	or	enclosures		per	OSS	
pair	is	common. Some	high-density	configurations	may	have	more.	To	ensure	that	
performance	is	consistent	across	server	nodes,	OST	LUNs	should	be	evenly	distributed	across	
the	OSS	servers.

File	data	is	stored	on	OSTs	in	byte-array	data	objects.	A	single	file	system	will	comprise	many	
OST	volumes,	to	a	maximum	of	8150.	The	on-disk	OST	structure	contains	a	few	special	
directories	for	configuration	files,	etc.,	and	the	file	system	data	which	accessed	via	object	IDs.	
Each	object	stores	either	a	complete	file	(when	stripe_count ==	1)	or	part	of	a	file	(when	
stripe_count >	1).	The	capacity	limit	of	an	individual	LDISKFS	OST is	128TB.	There	is	no
theoretical	limitation	with	ZFS,	but	volumes	up	to	256TB	have	been	tested.



Client Overview



The	Lustre	client	is	kernel-based	software	that	presents	an	aggregate	view	of	the	Lustre	
services	to	the	host	operating	system	as	a	POSIX-compliant	file	system.	To	applications,	a	
Lustre	client	mount	looks	just	like	any	other	file	system,	with	files	organised in	a	directory	
hierarchy.	A	Lustre	client	mount	will	be	familiar	to	anyone	with	experience	of	UNIX	or	Linux-
based	operating	systems,	and	supports	the	features	expected	of	a	modern	POSIX	file	system.

Lustre	Client	Services

Lustre	employs	a	client-server	model	for	communication.	Each	connection	has	an	sender	(the	
client	end	of	the	connection)	and	a	receiver	(the	server	process).	The	main	client	processes	
are	as	follows:

• Management	Client	(MGC):	The	MGC	process	handles	RPCs	with	the	MGS.	All	servers	
(even	the	MGS)	run	one	MGC	and	every	Lustre	client	runs	one	MGC	for	every	MGS	on	the	
network.

• Metadata	Client	(MDC): The	MDC	handles	RPCs	with	the	MDS.	Only	Lustre	clients	initiate	
RPCs	with	the	MDS.	Each	client	runs	an	MDC	process	for	each	MDT.

• Object	Storage	Client	(OSC): The	OSC	manages	RPCs	with	a	single	OST.	Both	the	MDS	and	
Lustre	clients	initiate	RPCs	to	OSTs,	so	each	of	these	machines	runs	one	OSC	per	OST

Lustre	Network	Routers

There	is	another	Lustre	service	that	is	often	seen	in	data	centres,	called	a	Lustre	Network	
Router,	or	more	commonly,	an	“LNet	router”.	The	LNet	router	is	used	to	direct	Lustre	IO	

Lustre File System – Clients

Lustre client combines the metadata and object storage into a single, coherent 
POSIX file system

§ Presented to the client OS as a file system mount point

§ Applications access data as for any POSIX file system

§ Applications do not therefore need to be re-written to run with Lustre

All Lustre client I/O is sent via RPC over a network connection

§ Clients do not make use of any node-local storage, can be diskless

19



between	different	networks,	and	can	be	used	to	bridge	different	network	technologies	as	
well	as	routing	between	independent	subnets.	These	routers	are	dedicated	servers	that	do	
not	participate	as	clients	of	a	Lustre	file	system,	but	provide	a	way	to	efficiently	connect	
different	networks.	For	example,	a	router	might	be	used	to	bridge	a	TCP/IP	Ethernet	fabric	
and	an	RDMA	OmniPath (OPA)	fabric,	or	provide	a	route	between	OPA	and	InfiniBand,	or	
between	two	independent	RDMA	InfiniBand	fabrics.

Routers	are	most	commonly	used	to	enable	centralisation of	Lustre	server	resources	such	
that	the	file	systems	can	be	made	available	to	multiple	administrative	domains	within	a	data	
centre (e.g.	to	connect	Lustre	storage	to	multiple	HPC	clusters)	or	even	between	campuses	
over	a	wide-area	network.	Multiple	routers	can	be	deployed	at	the	edge	of	a	fabric	to	
provide	load-balancing	and	fault	tolerance	for	a	given	route	or	set	of	routes.



Protocols Overview
Client IO, File IDs, Layouts



The	Lustre	client	software	provides	an	interface	between	the	Linux	virtual	file	system	and	the	
Lustre	servers.	The	client	software	is	composed	of	several	different	services,	each	one	
corresponding	to	the	type	of	Lustre	service	it	interfaces	to.	A	Lustre	client	instance	will	
include	a	management	client	(MGC,	not	pictured),	one	or	more	metadata	clients	(MDC),	and	
multiple	object	storage	clients	(OSCs),	one	corresponding	to	each	OST	in	the	file	system.	

The	MGC	manages	configuration	information.	Each	MDC	transacts	file	system	metadata	
requests	to	the	corresponding	MDT,	including	file	and	directory	operations,	and	management	
of	metadata	(e.g.	assignment	of	permissions),	and	each	OSC	transacts	read	and	write	
operations	to	files	hosted	on	its	corresponding	OST.

The	logical	metadata	volume	(LMV)	aggregates	the	MDCs	and	presents	a	single	logical	
metadata	namespace	to	clients,	providing	transparent	access	across	all	the	MDTs.	This	allows	
the	client	to	see	the	directory	tree	stored	on	multiple	MDTs	as	a	single	coherent	namespace,	
and	striped	directories	are	merged	on	the	clients	to	form	a	single	visible	directory	to	users	
and	applications.

The	logical	object	volume	(LOV)	aggregates	the	OSCs	to	provide	transparent	access	across	all	
the	OSTs.	Thus,	a	client	with	the	Lustre	file	system	mounted	sees	a	single,	coherent,	
synchronized	namespace,	and	files	are	presented	within	that	namespace	as	a	single	
addressable	data	object,	even	when	striped	across	multiple	OSTs.	Several	clients	can	write	to	
different	parts	of	the	same	file	simultaneously,	while,	at	the	same	time,	other	clients	can	
read	from	the	file.

Overview of Lustre I/O Operations

Client

L
O
V

OSC

OSC

OSC

MDS

LMV

MDC MDC

1

2

3

Object B

Object 

C

data stripe 1

data stripe 4

data stripe 7

data stripe 2

data stripe 5

data stripe 8

Object A

data stripe 0

data stripe 3

data stripe 6

OSSs

1 File open request

2
Return Layout EA

FID (Obj. A, Obj. B, Obj. C)

3 Read or write objects in parallel

MDSMDSMDS OSS

Directory ops, 

open/close,

metadata

Client
LOVLMV

Recovery,

file status,

file creation

File I/O 

file locking

22



When	a	client	looks	up	a	file	name,	an	RPC	is	sent	to	MDS	to	get	a	lock, which	will	be	either	
one	of	the	following:
• Read	lock	with	look-up	intent
• Write	lock	with	create	intent

The	MDS	returns	a	lock	plus	all	the	metadata	attributes	and	file	layout	extended attribute	
(EA) to	the	client.	The	file	layout	information	returned by	the	MDS contains	the	list	of	OST	
objects	containing the	file’s	data,	and the	layout	access	pattern	describing how	the	data	has	
been	distributed	across	the	set	of	objects.	The	layout information allows	the	client	to	access	
data	directly	from	the	OSTs.	Each	file	in	the	file	system has	a	unique	layout:	objects	are	not	
shared	between	files.

If	the	file	is	new,	the	MDS	will	also	allocate	OST	objects	for	the	file	based	on	the	requested	
layout	when	the	file	is	opened for	the	first	time.	The	MDS	allocates	OST	objects	by	issuing	
RPCs	to	the	object	storage	servers,	which	then	create	the	objects	and	return	object	
identifiers.	By	structuring	the	metadata	operations	in	this	way,	Lustre	avoids	the	need	for	
further	MDS	communication	once	the	file	has	been	opened.	After	the	file	is	opened, all	
transactions	are	directed	to	the	OSSs,	until	the	file	is	subsequently	closed.

All	files	and	objects	in	a	Lustre	file	system	are	referenced by	a	unique,	128-bit,	device-
independent	File	Identifier,	or	FID.	The	FID	is	the	reference	used by	a	Lustre	client	to	identify	
the	objects	for	a	file.	Note	that	there	is	an	FID	for		each	data	object	on	the	OSTs	as	well	as	
each	metadata	inode object	on	the	MDTs.	FIDs	provide	a	replacement	to	UNIX	inode
numbers,	which	were	used	in	Lustre	releases	prior	to	version	2.0.

When	the	mount command	is	issued	on	a	Lustre	client,	the	client	will	first	connect	to	the	
MGS	in	order	to	retrieve	the	configuration	information	for	the	file	system.	This	will	include	
the	location	of	the	root	of	the	file	system,	stored	on	MDT0.	The	client	will	then	connect	to	
the	MDS	that	is	running	MDT0	and	will	mount	the	file	system	root	directory.



Metadata	storage	allocation	for	inodes differs	depending	on	the	choice	of	back-end	
filesystem	(LDISKFS	or	ZFS).

For	LDISKFS	metadata	targets,	the	number	of	inodes for	the	MDT	is	calculated	when	the	
device	is	formatted.	By	default,	Lustre	will	format	the	MDT	using	the	ratio	of	2KB-per-inode.	
The	inode itself	consumes	512	bytes,	but	additional	blocks	can	be	allocated	to	store	extended	
attributes	when	the	initial	space	is	consumed.	This	happens	for	example,	when	a	file	has	
been	striped	across	a	lot	of	objects.	Using	this	2KB-per-inode	ratio	has	proven	to	be	a	reliable	
way	to	allocate	capacity	for	the	MDT.	

The	LDISKFS	filesystem	imposes	an	upper	limit	of	4	billion	inodes per	MDT.	By	default,	the	
MDT	filesystem	is	formatted	with	one	inode per	2KB	of	space,	meaning	512	million	inodes
per	TB	of	MDT	space.	In	a	Lustre	LDISKFS	file	system,	all	the	MDT	inodes and	OST	objects	are	
allocated	when	the	file	system	is	first	formatted.	When	the	file	system	is	in	use	and	a	file	is	
created,	metadata	associated	with	that	file	is	stored	in	one	of	the	pre-allocated	inodes and	
does	not	consume	any	of	the	free	space	used	to	store	file	data.	The	total	number	of	inodes
on	a	formatted	LDISKFS	MDT	or	OST	cannot	be	easily	changed.	Thus,	the	number	of	inodes
created	at	format	time	should	be	generous	enough	to	anticipate	near	term	expected	usage,	
with	some	room	for	growth	without	the	effort	of	additional	storage.

The	ZFS	filesystem	dynamically	allocates	space	for	inodes and	and	inodes are	allocated	as	
needed,	which	means	that	ZFS	does	not	have	a	fixed	ratio	of	inodes per	unit	of	MDT	space.	A	
minimum	of	4kB	of	usable	space	is	needed	for	each	inode,	exclusive	of	other	overhead	such	
as	directories,	internal	log	files,	extended	attributes,	ACLs,	etc.	

Lustre inodes

Lustre inodes are MDT inodes

§ Default inode size is 2K (actually an MDT inode is 512 bytes, plus up to 2K for EAs)
– Metadata inode on-disk size is larger for ZFS

§ The maximum number of inodes per MDT in LDISKFS is 4 billion, but there is no practical limit for 
ZFS

Lustre inodes hold all the metadata for Lustre files

Lustre inodes contain:

§ Typical metadata from stat() (UID, GID, permissions, etc.)

§ Extended Attributes (EA)

Extended Attributes contain:

§ References to Lustre files (OSTs, Object ID, etc.)

§ OST Pool membership, POSIX ACLs, etc.

23



With	older ZFS	on	Linux	releases	(prior	to	0.7.0),	Lustre	xattrs would	exceed	the	allocated	
dnode space	(512	bytes),	and	if	4KB	sectors	were	used (ashift=12)	then	each	MDT	dnode
would	need	(512+4096)*2	bytes	of	space	(multiplied	by	2	for	the	ditto	copy,	over	and	above	
mirrored	VDEV).	With	dynamic	dnodes in	the	newer	releases	(or	with	512-byte	sectors,	which	
is	increasingly	rare)	the	space required	is	only	(512+512)*2	bytes per	dnode.

ZFS	also	reserves	approximately	3%	of	the	total	storage	space	for	internal	and	redundant	
metadata,	which	is	not	usable	by	Lustre.	Since	the	size	of	extended	attributes	and	ACLs	is	
highly	dependent	on	kernel	versions	and	site-specific	policies,	it	is	best	to	over-estimate	the	
amount	of	space	needed	for	the	desired	number	of	inodes,	and	any	excess	space	will	be	
utilized	to	store	more	inodes.	Note	that	the	number	of	total	and	free	inodes reported	by	lfs
df -i for	ZFS	MDTs	and	OSTs	is	estimated	based	on	the	current	average	space	used	per	
inode.	When	a	ZFS	filesystem	is	first	formatted,	this	free	inode estimate	will	be	very	
conservative	(low)	due	to	the	high	ratio	of	directories	to	regular	files	created	for	internal	
Lustre	metadata	storage,	but	this	estimate	will	improve	as	more	files	are	created	by	regular	
users	and	the	average	file	size	will	better	reflect	actual	site	usage.

A	Lustre	file	system	uses	extended	attributes	(EAs)	contained	in	the	metadata	inode to	store	
additional	information	about	a	file.	Examples	of	extended	attributes	are	ACLs,	layout	(e.g.	
striping)	information,	and	the	unique Lustre	file	identifier	(FID)	of	the	file. The	layout	EA	
contains	a	list	of	all	object	IDs	and	their	locations	(that	is,	the	OSTs	that	contain	the	objects).

For	files	with	very	wide	stripes,	the	layout	EA	may	be	too	large	to	store	in	the	inode and	will	
be	stored	in	separate	blocks.	Be	careful	when	defining	the	layout	for	files,	and	try	to	make	
sure	that	the	layout	is	only	as	large	/	wide	as	needed:	storing	the	EA	in	the	inode whenever	
possible	avoids	an	extra,	potentially	expensive,	disk	seek.	

Lustre	internally	uses	a	128-bit	file	identifier	(FID)	for	all	files.	To	interface	with	user	
applications,	the	64-bit	inode numbers	are	returned	by	the	stat(),	fstat(),	and	
readdir() system	calls	on	64-bit	applications,	and	32-bit	inode numbers	to	32-bit	
applications.



When	a	client	wants	to	read	from	or	write	to	a	file,	it	first	fetches	the	list	of	object	FIDs	
containing the	file’s	data from	the	MDT	inode for	the	file.	The	client	then	uses	this	
information	to	connect	directly	to	the	object storage	servers	where	the	data	objects	are	
stored	and	transact	I/O	on	the	file.

Information	about	where	file	data	is	located	on	the	OST(s)	is	stored	as	an	extended	attribute	
called	the	layout	EA. The	layout EA	is	stored	in	an	MDT	inode identified	by	the	FID	for	the	file.	
If	the	file	is	a	regular	file	(not	a	directory	or	symbol	link),	the	MDT	inode points	to	1-to-N	OST	
object(s)	on	the	OST(s)	that	contain	the	file	data.	If	the	MDT	layout	EA	points	to	one	object,	
all	the	file	data	is	stored	in	that	object.	If	the	layout	EA	points	to	more	than	one	object,	the	
file	data	is	striped	across	the	objects	using	RAID	0,	and	each	object	is	stored	on	a	different	
OST.

Layout EA is an extended attribute stored 

as part of a file’s metadata on the MDT:

§ A list of FIDs, used to locate the file data 

objects on the OST(s)

§ The layout EA points to 1-to-N OST object(s) 

on the OST(s) that contain the file data

§ If the layout EA points to one object, all the 

file data is stored entirely in that object. 

§ If the layout EA points to more than one 

object, the file data is striped across the 

objects using RAID 0, and each object is 

stored on a different OST

Layout EA

MDS OSSs

FID

Layout
EA

OST0

Data Stripe 0Object AOST0
Object A

OST1

Data Stripe 1Object BOST1
Object B

OST1

Data Stripe 2Object COST1
Object C

24



One	of	the	main	factors	leading	to	the	high	performance	of	Lustre	file	systems	is	the	ability	to	
stripe	data	across	multiple	OSTs	in	a	round-robin	fashion.	Users	can	optionally	configure	the	
number	of	stripes,	stripe	size,	and	OSTs	that	are	used	for	each	file. Striping	can	be	used	to	
improve	performance	enabling	the	aggregate	bandwidth	to	a	single	file	to	exceed	the	
bandwidth	of	a	single	OST.	The	ability	to	stripe	is	also	useful	when	a	single	OST	does	not	have	
enough	free	space	to	hold	an	entire	file.

Striping	allows	segments	or	'chunks'	of	data	in	a	file	to	be	stored	on	different	OSTs.	In	the	
Lustre	file	system,	a	RAID	0	pattern	is	used	in	which	data	is	"striped"	across	a	certain	number	
of	objects.	The	number	of	objects	in	a	single	file	is	called	the	stripe_count.	Each	object	
contains	chunks	of	data	from	the	file,	and	chunks	are	written	to	the	file	in	a	circular	round-
robin	manner.	When	the	chunk	of	data	being	written	to	a	particular	object	exceeds	the	stripe
size,	the	next	chunk	of	data	in	the	file	is	stored	on	the	next	object.

When	reading	the	data	back	from	a	file,	the	client	needs	to	know	the	location	of	the	OST	
objects,	the	starting	object,	and	the	stripe	width	(or	chunk	size)	in	order	to	correctly	retrieve	
the	file’s	data	with	the	same	pattern	that	was	used	to	write	the	file.

The	maximum	number	of	objects	that	can	be	used	to	store	a	single	file	is	2000, i.e.	this	is	the	
maximum	number	of	OSTs	that	a	single	file	can	be	striped	across.	File	systems	can	be	
comprised	of	more	than	2000	OSTs,	but	a	single	file	within	that	file	system	is	restricted	to	no	
more	than	2000	OSTs,	which	puts	an	effective	limit	on	the	aggregate	bandwidth	for	a	single	
file.	It	is,	of	course,	a	rather	large	limit.	The	size	of	a	single	object	is	governed	by	the	
underlying	storage	file	system,	and	the	physical	constraints	of	the	hardware.

Each file in Lustre has its own unique 
file layout, comprised of 1 or more 
objects in a stripe equivalent to RAID 0

File layout is allocated by the MDS 

Layout is selected by the client, either

§ by policy (inherited from parent directory)

§ by the user or application

Layout of a file is fixed once created

File Layout: Striping

File A ObjectFile B File C

OST01

2
5

1

OST00

1
4
7

OST02

3
6

1

25



Introduced	in	Lustre	software	release	2.0,	Lustre	file	identifiers	(FIDs)	replace	UNIX	inode
numbers	for	identifying	files	or	objects.	FIDs	are	independent	of	the	underlying	file	system	
OSD,	and	enabled	support	for	multiple	MDTs	(introduced	in	Lustre	software	release	2.4)	and	
ZFS	(introduced	in	Lustre	software	release	2.4).	Also	introduced	in	release	2.0	is	an	LDISKFS	
feature	named	FID-in-dirent (also	known	as	dirdata)	in	which	the	FID	is	stored	as	part	of	the	
name	of	the	file	in	the	parent	directory.	This	feature	significantly	improves	performance	
when	executing	commands	like	ls,	by	reducing	disk	I/O.	The	FID-in-dirent is	generated	at	the	
time	the	file	is	created.

An	FID	is	a	128-bit	identifier	that	contains	a	unique	64-bit	sequence	number,	a	32-bit	object	
ID	(OID),	and	a	32-bit	version	number.	The	sequence	number	is	unique	across	all	Lustre	
targets	in	a	file	system	(OSTs	and	MDTs).	FIDs	are	not	bound	to	a	specific	target,	they	are	
never	re-used	and	FIDs	can	be	generated	by	Lustre	clients.

Sequences	are	granted	to	clients	by	servers.	A	sequence	number	is	unique	across	all	Lustre	
targets	(OSTs	and	MDTs)	in	a	file	system.	When	a	client	connects	to	a	Lustre	file	system,	a	
new	FID	sequence	is	allocated.	The	sequence	is	discarded	when	the	client	disconnects,	and	it	
is	not	re-used.	When	the	client	reconnects	with	the	file	system,	a	new	sequence	will	be	
allocated.	Each	sequence	has	a	limited	number	of	FIDs	(128,000)	which	may	be	created	
within	its	range.	When	the	sequence	is	exhausted,	a	new	sequence	is	started.

Sequence	controller	(MDT0)	allocates	super-sequence	ranges	to	sequence	managers.	A	
super-sequence	is	a	large	contiguous	range	of	sequence	numbers.	Sequence	managers	
control	distribution	of	sequences	to	clients,	preventing	FID	collisions.	The	MDS	and	OSS	

Lustre File Identifier (FID)

Lustre file identifiers (FIDs) provide a device-independent replacement for UNIX inode numbers 
to uniquely identify files or objects

A File Identifier (FID) is a unique 128-bit identifier for Lustre files and objects, comprising:

§ 64-bit sequence number – used to locate the storage target
– Unique across all OSTs and MDTs in a file system

§ 32-bit object identifier (OID) – reference to the object within the sequence

§ 32-bit version number – currently unused; reserved for future work

FID-in-dirent feature stores the FID as part of the name of the file in the parent directory

§ Significantly improves performance for “ls” command executions by reducing disk I/O

§ The FID-in-dirent is generated at the time the file is created

§ Introduced in Lustre 2.0, FID-in-dirent is not compatible with the Lustre version 1.8 format
26



servers	for	a	file	system	are	all	sequence	managers.	Ranges	of	sequence	IDs	are	granted	by	
managers	to	Lustre	clients	as	reservations,	which	allows	the	client	to	create	the	FID	for	new	
files	using	a	reserved	sequence	ID.	When	the	existing	allocation	is	exhausted,	a	new	set	of	
sequence	numbers	is	provided.	A	given	sequence	ID	always	maps	to	the	same	storage	target,	
and	objects	created	within	same	sequence	will	be	located	on	the	same	storage	target.

An	FID	does	not	contain	any	location	information.	To	determine	the	location	of	an	object	
from	its	FID,	Lustre	has	the FID	location	database	(FLDB). The	FLDB is	a	database	mapping	a	
sequence	of	FIDs	to	the	specific	target	(MDT	or	OST) that	manages	the	objects	within	the	
sequence.	The	complete	FLDB	for	a	file	system	is	on	on	MDT0.	When	DNE	is	enabled,	every	
MDT	also	has	its	own	local	FLD,	a	subset	of	the	full	FLDB.	The	FLDB	is	cached	by	all	clients	and	
servers	in	the	file	system,	but	is	typically	only	modified	when	new	servers	are	added	to	the	
file	system.

The	underlying	filesystem	still	operates	on	inodes.	An	object	index	is	stored	on	disk	to	handle	
FID	to	on-disk	inode mapping.



Lustre	implements	byte-granular	file	and	fine-grained	metadata	locking.	Multiple	clients	can	
read	and	modify	the	same	file	or	directory	concurrently.	The	Lustre	distributed	lock	manager	
(LDLM)	ensures	that	files	are	coherent	between	all	clients	and	servers	in	the	file	system.	The	
MDT	LDLM	manages	locks	on	inode permissions	and	pathnames.	Each	OST	has	its	own	LDLM	
for	locks	on	file	stripes	stored	thereon,	which	scales	locking	performance	as	the	file	system	
grows.

The	LDLM	also	plays	a	part in	resolving	client	failures.	Recovery	from	client	failure	in	a	Lustre	
file	system	is	based	on	lock	revocation	and	other	resources,	so	surviving	clients	can	continue	
their	work	uninterrupted.	If	a	client	fails	to	respond	to	a	blocking	lock	callback	from	the	
Distributed	Lock	Manager	(DLM),	or	fails	to	communicate	with	the	server	for a	long	period	of	
time	(i.e.,	no	pings),	the	client	is	forcibly	removed	from	the	cluster	(evicted).	This	enables	
other	clients	to	acquire	locks	blocked	by	the	dead	client's	locks,	and	also	frees	resources	(file	
handles,	export	data)	associated	with	that	client.	

Locking

Distributed lock manager in the manner of OpenVMS 

Cache-coherent across all clients

Metadata server uses inode bit locks for file lookup, state (modification, open r/w/x), EAs and layout

§ Clients can fetch multiple bit locks for an inode in a single RPC

§ MDS manages all inode modifications to avoid lock resource contention

Object storage servers provide extent-based locks for OST objects

§ File data locks are managed for each OST

§ Clients can be granted read extent locks for part or all of the file, allowing multiple concurrent readers 
of the same file

§ Clients can be granted non-overlapping write extent locks for regions of the file

§ Multiple Lustre clients may access a single file concurrently for both read and write, avoiding 
bottlenecks during file I/O

27



Glossary
Just so there's no confusion…
DNE - Distributed Namespace Environment -
feature to aggregate multiple MDTs (possibly on 
many MDS’s) into a single filesystem 
namespace

IDIF - OST object ID In FID - specific FID range 
reserved for compatibility with pre-DNE OST 
objects

IGIF - Inode and Generation In FID - specific FID 
range reserved for compatibility from Lustre 1.x 
MDT inode objects

FID - File IDentifier - unique 128-bit identifier for 
every object within a single filesystem.

LMV - Logical Metadata Volume - client software 
layer that handles client (llite) access to multiple 
MDTs

LOD - Logical Object Device - MDS software 
layer that handles access to multiple MDTs and 
multiple OSTs

LOV - Logical Object Volume - client software 
layer that handles client (llite) access to multiple 
OSTs

MDC - MetaData Client - client software layer 
that interfaces to the MDS

MDD - Metadata Device Driver - MDS software 
layer that understands POSIX semantics for file 
access

MDS - MetaData Server - software service that 
manages access to filesystem namespace 
(inodes, paths, permission) requests from the 
client.

MDT - MetaData Target - storage device that 
holds the filesystem metadata (attributes, 
inodes, directories, xattrs, etc)

MGS - Management Server - service that helps 
clients and servers with configuration

MGT - Management Target - storage device that 
holds the configuration logs

OFD - Object Filter Device - OSS software layer 
that handles file IO

OSC - Object Storage Client - client software 
layer that interfaces to the OST

OSD - Object Storage Device - server software 
layer that abstracts MDD and OFD access to 
underlying disk filesystems like ldiskfs and ZFS

OSP - Object Storage Proxy - server software 
layer that interfaces from one MDS to the OSD 
on another MDS or another OSS

OSS - Object Storage Server - software service 
that manages access to filesystem data (read, 
write, truncate, etc)

OST - Object Storage Target - storage device 
that holds the filesystem data (regular data files, 
not directories, xattrs, or other metadata)

28



Lustre Community

§ http://lustre.org

Open Scalable File Systems (OpenSFS)

§ http://opensfs.org/

European Open File Systems

§ https://www.eofs.eu/

Download Lustre

§ https://wiki.hpdd.intel.com/display/PUB/Lustre+Releases

Lustre Source Code

§ git://git.hpdd.intel.com/fs/lustre-release.git

Lustre Management and Monitoring

§ https://github.com/intel-hpdd/intel-manager-for-lustre

Lustre Systems Administration Guide

§ http://wiki.lustre.org/Category:Lustre_Systems_Administration

Lustre Reference Manual

§ http://lustre.org/documentation

Further Reading and References

29


