
Lustre Investigation Report

FMS and NetCDF optimization

10/02/08 Sun and ORNL Confidential Page 1 of 8

Author Date Description of Document
Change

Client Ap-
proval By

Client Approv-
al Date

LiuYing May 21, 2008 Create the document
LiuYing May 28, 2008 Revise per the current progress
LiuYing Sep.10, 2008 Update the performance results

10/02/08 Sun and ORNL Confidential Page 2 of 8

Problem Statement

FMS(Flexible Modeling System) is a software framework for supporting the efficient
development, construction, execution, and scientific interpretation of atmospheric,
oceanic, and climate system models. In ORNL tests, FMS was reported to have
performance problems with NetCDF on liblustre. It took 2000 processor cores about 3
hours to write 200 GB data with each processor writing 100MB.

Brief Introduction to FMS

There are four layers in the architecture of FMS - coupler layer, model layer, distributed
grid layer and machine layer. The MPP(Massive Parallel Processing) modules in
distributed grid layer and machine layer, form the parallel architecture of FMS. It also
calls NetCDF interfaces to implement its IO.

Approach

To find the bottlenecks and improve the performance, we investigated the FMS I/O
pattern, NetCDF performance tuning and the FMS performance study.

 1. FMS I/O pattern

 a) Parallel I/O mode
There are two kinds of parallel I/O modes in mpp_io_mod. They are described by
two parameters, threading and fileset.
 Single-threaded I/O: a single process acquires all the data and writes it to one

file. This I/O mode can provide acceptable performance for small scale
applications, but when the number of the processes increase, the
performance may decrease because one I/O process has very bad
scalability.

 Multi-threaded, multi-fileset I/O: One file one process, which is also called file-
per-process(FPP) mode. Usually this mode can achieve good performance in
run time, but the end users have to do an offline post-processing to combine
those independent files, and the system has to pay extra overhead to
manage the files and lots of metadata.

The FMS application uses FPP mode in our test.

 b) I/O pattern
In FMS, fms_io_exit() is called after all fields have been written to temporary
files, then the resulting NetCDF files are created. Since FMS writes data by
NetCDF interfaces, its I/O pattern depends on NetCDF’s access pattern. The I/O

10/02/08 Sun and ORNL Confidential Page 3 of 8

data size written each time is determined by the NetCDF block size. If the data
size is bigger than NetCDF block size, the data will be divided into smaller
chunks of the block size, otherwise the small data won’t be written out until a
block size worth of data is collected. The NetCDF block size is discussed in the
next section.

 c) I/O operations
The main I/O operations in MPP modules include mpp_open(), mpp_close(),
mpp_write and mpp_flush(). The data processing from mpp modules to
NetCDF interfaces, then to POSIX is described in Figure 1.

Figure 1. mpp_io operations

 2. NetCDF

 a) Stripe alignment
Lustre distributes files across the OSTs as per the stripe size. If I/O data is not
aligned with the stripe size, extent lock conflicts will occur and cause
performance issues. The NetCDF code for defining the block size for reads and
writes to files is as shown below.

10/02/08 Sun and ORNL Confidential Page 4 of 8

mpp_openmpp_closempp_write mpp_flush

nf_createnf_close

nfiop->sync

px_pgout

write

nf_sync

nfiop->get

write_record

nf_put_vara_XXX

The hint in NetCDF create/open operation can be used to set blksz for
performance tuning.
int nc__create(const char path[], int cmode, size_t initialsize, size_t* chunksize, int* ncid)
int nc__open(const char path[], int mode, size_t* chunksize, int* ncid)

 b) stripe_count
Bug(14010) in Lustre for FPP mode reports that if stripe_count is set to -1 by
default, the performance might be very bad, because the file is distributed
across all the OSTs, which will introduce many extent lock conflicts. If
stripe_count is set to 1, which means each file is stored in only one OST, the
performance could increase.
We compared these two different conditions as shown in Table 1. The
recommendation is to set the stripe_count equal to 1.

Test cases and Results

We tested the FMS application on ORNL Jaguar.

 1. NetCDF
We added NetCDF interfaces in the IOR benchmark to simulate FMS behavior and
to check if NetCDF has some performance bottlenecks with Lustre.

 a) stripe_count
As mentioned above, for FPP mode, stripe_count should be set 1. A test was
performed in FPP mode on 128 clients and stripe count was set to -1 and 1
respectively. We used the following IOR command “IOR -a API -b 1m -t 1m -F -q
-w -v -o testfile”. The result is as shown in Table 1.

10/02/08 Sun and ORNL Confidential Page 5 of 8

/ *
 * What i s t he pr ef er r ed I / O bl ock s i z e?
 * /
s t a t i c s i z e_t bl ks i z e(i nt f d)
{
#i f def i ned(HAVE_ST_BLKSI ZE)
 s t r uc t s t a t s b;
 i f (f s t a t (f d, &s b) > - 1)
 {
 i f (s b. s t _bl ks i z e >= 8192)
 r et ur n (s i z e_t) s b. s t _bl ks i z e ;

 r et ur n 8192;
 }
 / * el s e, s i l ent i n t he f ace of er r or * /
#endi f
 r et ur n (s i z e_t) 2 * pages i z e() ;
}

Table 1. Write performance of NetCDF
API stripe_count B.W.(MB/s) open(s) write(s) close(s)

NetCDF
-1 127.96 0.992010 0.894060 0.892494

1 4277 0.025051 0.022407 0.018789

Obviously, the write bandwidth of stripe_count=1 is more than 30x of the one of
stripe_count=-1, and the time required for open, write and close operations with
stripe_count=1 is much smaller than those with stripe_count=-1.

 b) Chunk size
The NetCDF blksize on Jaguar is 1M, same as the stripe size, so there is no
obvious performance issue.

 2. FMS
We tested FMS on Jaguar with stripe_count=1, ost_num=72, ntiles=6, npz=24,
days=2, dt_atmos=1800 and test_case=13 in atmosphere model. Ntiles=6 means
we use cubed-sphere FV core in FMS. The runtime results of each module and I/O
operation is shown in Table 2 and and the output file size and aggregation I/O
bandwidth is reported as well.

Table 2. FMS performance results
layout={npes_x,npes_y} {8,8} {14,14} {2,2} {2,2} {2,2}

npx=npy 81 155 49 81 155

nprocs 384 1176 24 24 24

cells/proc 102 122 600 1640 6006

Total runtime(s) 9.1760 22.3424 17.2550 60.2662 566.0097

FV_RESTART(s) 0.0846 0.2681 0.1276 0.3427 1.2389

FV_DYNAMICS(s) 4.7660 7.6858 16.6060 59.0096 562.1617

COMM_TOTAL(s) 2.5270 4.5569 2.6906 5.5573 26.8538

C_SW(s) 0.3104 0.5144 1.7746 6.7041 89.2150

D_SW(s) 1.2602 2.0012 7.4801 31.0152 336.1980

TRACE_2D(s) 1.2753 2.1418 1.0829 2.1742 11.1875

COMM_TRAC(s) 0.6852 1.1815 0.4204 0.5095 1.3150

REMAPPING(s) 0.0927 0.0957 1.0599 2.8463 10.2791

OMEGA_DEL2(s) 0.0470 0.0850 0.0942 0.1504 0.4266

FV_DIAG(s) 0.3672 0.4904 0.2089 0.5250 2.0995

Open (aggregation) (s) 380.96 2241.11 0.63 0.394537 0.425904

Unlink (aggregation) (s) 351.66 6709.69 1.12 0.861732 0.830317

write(aggregation) (s) 1.646247 4.811195 0.167909 0.411026 1.016942

close(aggregation) (s) 5.640173 37.057911 0.029434 0.016724 0.020184

10/02/08 Sun and ORNL Confidential Page 6 of 8

1 atmos_daily file (bytes) 40044 34184 327468 872364 3175688

1 grid_spec file (bytes) 17992 17880 22744 31320 66840

1 surf_hourly file (bytes) 22380 20964 91644 222844 777252

Aggregation B.W.(filesize/IOtime) (MB/s) 11.3 10.71 124.64 367.47 962.84

We can scale-up or speed-up (defined in the following) the problem to evaluate the
system performance, including the capability of both I/O and computation.
However, only I/O performance is discussed in this report.

Here are some definitions:
● problem size: the number of the cells, ncells=npx×npy×ntiles ;
● system size: the number of the processes, nprocs=npesx×npesy×ntiles .

The larger the number is, the stronger the computation capability the system
has.

● workload intensity: the number of the cells per process, wl= npx×npy
npesx×npesy

.

Ideally, the larger the number is, the more computation time would be spent
and the more data would be written.

 a) scale-up
For the first two test cases in Table 2 - For about 100 cells per process, when
the number of processes increased, the file size each process wrote was almost
the same, but the total run time increased. Because the computation time
couldn’t cost much due to only 100 cells per process, it could be caused by the
I/O operation. The results showed that opentime / procnprocs=364=0.99 s and

opentime / procnprocs=1176=1.91 s . When the number of the processes increases,
the average number of the processes accessing each OST increases too and I/O
access conflicts occur. Also, the aggregation I/O bandwidth shows that if many
processes access the same OST, it will cause performance degradation due to
competition.

 a) speed-up
For the last three test cases in Table 2 - For the same system scale(nprocs=24),
when problem size became larger, the workload intensity of each process grew
heavier, the file size each process wrote became larger too, and the total runtime
increased remarkably. But I/O operation time didn’t cost much, but the
computation time did. The results showed that writetime / procnpx=49=0.007s  ,

writetime / procnpx=81=0.017 s and writetime / procnpx=155=0.042 s . Although
the total runtime for npx=npy=155 is 566 seconds, the aggregation I/O time is no
more than 3 seconds. This proves that the computation cost were significant.

10/02/08 Sun and ORNL Confidential Page 7 of 8

The analysis above shows that for a given FMS system or problem, we should
consider the impact of both computation time and I/O bandwidth to find an optimal
solution, as there is a trade-off between them. They determine the response time
and throughput of the system together. Apparently, for the same system scale, the
incrementing of the cells number will help a lot with the aggregation I/O bandwidth,
but the computation time increases significantly. On the contrary, for the same
problem size, the increment of the nprocs will improve the computation time, but I/O
conflicts will occur.

Conclusions & Future work

In this report, the investigations on the FMS application were described. The results
showed that NectCDF can achieve high performance in FPP mode with stripe_count=1,
and we have not found any obvious I/O performance degradation in our large scale
test on Jaguar. The experiments show the evident trade-off between computation time
and I/O performance when we discuss the system scale and problem size.
Although we have spent some time in studying cube-sphere FV core in FMS, we are
not sure if we can reproduce any performance problem. If the performance issue
occurs again or more information can be provided, we will investigate this further in the
future.

Reference

1. http://www.gfdl.noaa.gov/fms/
2. http://sivo.gsfc.nasa.gov/cubedsphere_overview.html
3. William M. Putman, “Development of the Finite-volume Dynamical Core on the

Cubed-sphere”, Ph.D dissertation from college of arts and sciences, the Florida
State University, summer, 2007.

4. http://www.unidata.ucar.edu/software/netcdf/

10/02/08 Sun and ORNL Confidential Page 8 of 8

http://www.gfdl.noaa.gov/fms/
http://www.unidata.ucar.edu/software/netcdf/
http://sivo.gsfc.nasa.gov/cubedsphere_overview.html

	Problem Statement
	Brief Introduction to FMS
	Approach
	 1.FMS I/O pattern
	 2.NetCDF

	Test cases and Results
	 1.NetCDF
	 2.FMS

	Conclusions & Future work
	Reference

