
1

Multi-Rail High-Level Design

Document authors Amir Shehata Olaf Weber

Designer Amir Shehata Olaf Weber

Developers Amir Shehata Olaf Weber

Contents
Multi-Rail High-Level Design .. 1

Introduction .. 3

Objectives .. 3

Reference Documents ... 3

Document Structure ... 3

Acronym Table .. 3

Design Overview .. 4

System level .. 4

lnetctl .. 5

DLC library... 5

LNet IOCTL ... 5

LNet .. 5

Primary NID ... 6

PTLRPC ... 7

LNDs .. 7

NUMA Selection ... 7

Dynamic peer discovery .. 7

Over-the-wire protocol ... 8

Use Case scenarios ... 8

Edge Case scenarios ... 9

Debugging Requirements ... 10

User Space .. 11

lnetctl .. 11

DLC Library ... 11

LNetCtl IOCTL .. 11

Splitting Adding a Net and Adding an NI .. 12

Network to Network Interface CPT inheritance ... 13

2

TCP Bonding vs Multi-Rail .. 14

Userspace configuration Parsing vs in-kernel parser ... 14

Backwards Compatibility ... 14

Adding local NI .. 15

Removing local NI .. 17

Adding Peer NID ... 18

Removing Peer NID ... 20

ip2nets .. 21

User Defined Selection Policies ... 21

Kernel Space... 25

Threading model... 25

Description... 25

Locking ... 26

Extending NUMA awareness ... 26

NUMA distance ... 26

New CPT Interfaces ... 26

Memory Descriptors ... 27

Primary NIDs ... 27

IOCTL Handling .. 28

Adding NI ... 28

Removing NI ... 29

Adding Peer NID ... 29

Removing Peer NID ... 30

User Defined Selection Policies ... 30

Dynamic Behavior .. 35

Overview .. 35

Sending Messages ... 35

Receiving Messages .. 39

Backward Compatibility ... 39

Dynamic Peer Discovery ... 40

Finite State Machines .. 57

3

Introduction

Objectives

This High Level Design Document outlines the Multi-Rail design in sufficient detail that it can be used as
the basis for implementation.

The intent for the first revision of this document is to target sign-off by all stakeholders. Subsequently as
the implementation work is divided into phases, multiple other documents will be created as needed
detailing the design further. This document will be updated with reference links to the other detailed
design documents.

Reference Documents

Document Link

Multi-Rail Scope and Requirements Document

Document Structure

This document is made up of the following sections:

Design Overview: Describes data structures and APIs for both User Space and Kernel Space

User Space: Describes the details of user space changes

Kernel Space: Describes the details of Kernel Space changes including the Dynamic Discovery Behavior

Acronym Table

Acronym Description

LNet Lustre Network

NI Network Interface

RPC Remote Procedure Call

FS File System

o2ib Infiniband Network

TCP Ethernet TCP-layer Network

NUMA Non-Uniform Memory Access

RR Round Robin

CPT CPU Partition

CB Channel Bonding

NID Network Identifier

downrev Node with no Multi-Rail

uprev Node with Multi-Rail

http://wiki.lustre.org/images/7/73/Multi-Rail%2BScope%2Band%2BRequirements%2BDocument.pdf

4

Design Overview

System level

The following diagram illustrates the components affected by this work and how they relate to each other.

Figure 1: System Level Diagram

A quick summary of the changes to be made to the subsystems follows. In addition to the subsystems as
such, some changes will be made to the LNet over-the-wire protocol. All of these changes will be
discussed in greater detail in following sections of this document.

5

lnetctl

The lnetctl utility will be extended with additional configuration capabilities. Each of the listed

capabilities can be configured both via a YAML configuration file and via command-line parameters.

 Define multiple interfaces for the node (local NI or NI). A NI can be both added and removed.

 Define multiple interfaces for a peer (peer NI). A peer NI can be both added to and removed from
a peer.

 Define rules that modify how a local NI/peer NI pair is chosen when sending a message. These
rules are referred to as User Defined Selection Policies or selections.

The changes to lnetctl command line and configuration file syntax are discussed below.

DLC library

The DLC library will be extended to parse the new configuration options, and translate them into the
IOCTL calls that communicate with the kernel.

The DLC APIs are described in more details below.

LNet IOCTL

New IOCTLS are added to handle the new configuration options.

 Add/Delete/Query local NI.

 Add/Delete/Query peer NI.

 Add/Delete/Query selection policies.

A list of the IOCTLS is described in more details below.

LNet

The primary data structures maintained by the LNet module will be modified as follows: (cfg-040)

 struct lnet_ni will reference exactly one NI

 struct lnet_net will be added which can point to multiple lnet_ni structures

 struct lnet (aka lnet_t) will have a list of lnet_net structures instead of lnet_ni

structures

 struct lnet_peer will be renamed to struct lnet_peer_ni, and will represent a peer NID

with all its credits

 struct lnet_peer_net will encapsulate multiple lnet_peer_ni structures. This structure's

purpose is to simplify the selection algorithm as discussed later.

 struct lnet_peer will encapsulate multiple lnet_peer_net structures

6

Figure 2: LNet Data Structure Diagram

ln_peer_ni_tables[] is a hashtable of the lnet_peer_ni instances. Since the key to a peer_ni is

the NID; therefore when messages are received the source NID is used to lookup a lnet_peer_ni, and

from there a reverse lookup can be done to find the lnet_peer structure. Similarly the destination NID

can be used for the same purpose when sending a message.

There are operations, such as show commands where the ln_peer_list is traversed and the peers are

visited and returned to user space to be displayed in YAML format.

Details on how these structures are built are described in the following sections.

Primary NID

Both LNet and users of LNet like PtlRPC and LDLM assume that a peer is identified by a single NID. In
order to minimize the impact of the changes to LNet on its users, a primary NID will be selected from a
peer's NIDs, and this primary NID will be presented to the users of LNet.

The only hard limitation on the primary NID of a peer is that it must be unique within the cluster. The
section on Primary NIDs below goes into more detail.

7

PTLRPC

The PtlRPC subsystem will be changed to tell LNet whether the messages it sends to a peer may go over
whatever local NI/peer NI combination or whether a specific peer NI should be preferred. The distinction
is here between a PtlRPC request, which can be sent over whichever path seems most suitable, and a
PtlRPC response which should be sent to the peer NI from which the request message was received.

The PtlRPC subsystem signals this to LNet by setting the self parameter of LNetGet()/LNetPut()

to LNET_NID_ANY for a free choice of paths, and to the NID of one of its own interfaces for a restricted

choice. The local NID should be the local NID on which the original request was received.

In addition, PtlRPC may be extended to signal LNet to rediscover a peer, for example if it needs to drop
the connection to a peer.

LNDs

No specific changes to the LNDs are planned beyond those necessary to interface correctly with the
changes made to LNet.

The multiple-interface support of the socklnd layer will be retained for backward compatibility. For

testing purposes we may add a tunable to select between interpreting this configuration form as multi-rail
and the original behavior. If the tunable is retained in shipping code, it will default to the old behavior. An
existing configuration will have the same behavior as before.

NUMA Selection

An important criterion when selecting a local Network Interface from which to send a message is NUMA
locality. When an NI is configured it can be associated with a CPU partition which maps to a NUMA node.
The memory used during message sending is allocated on a specific NUMA node. There is significant
performance gain in selecting the local NI which is nearest this NUMA node. This can be determined from
the CPU partition associated with the local NI on creation.

A "NUMA range" tunable will control the search width. Setting this value to a high number basically turns
off NUMA based selection, as all local NIs are considered. cfg-090, snd-025

Dynamic peer discovery

Dynamic peer discovery will be added to LNet. It works by using an LNet PING to discover whether a

peer node supports the same capabilities. Support is indicated by setting a bit in
the lnet_ping_info_t->pi_features field.

An LNet PUSH message is added to enable a node to send its local NI configuration to a peer. To the

largest extent possible this will be implemented in terms of the existing interfaces: Event Queues, Memory
Descriptors, etc.

Dynamic peer discovery can be enabled, disabled, or verification-only. In the last case, the dynamic
discovery protocol will run, but not change peer data structures. Instead it will compare the data

8

structures and the received information, and complain of differences. Verification can be used to check
the validity of YAML configuration files.

In addition it is possible to have situations where dynamic peer discovery is enabled, but some peers
have been configured using DLC. We propose to address this case by deferring to the DLC-provided
configuration, but also emitting warnings that this configuration differs from what discovery sees. The
section on The Discovery Algorithm below goes into more detail.

Over-the-wire protocol

The LNet PUSH message described above is added to the messages that can be sent over the wire. It

contains the same data in the same format as an LNet PING reply.

It seems likely that the LNET_PROTO_PING_MATCHBITS can also be used for the LNet push message –

should this turn out to be false, the next available bit will be used.

We add extra information to the lnet_ping_info_t datastructure without changing the layout of this

structure. The extra information includes the following:

 A feature bit to indicate that the node runs a multi-rail-capable version of the software.

 The NI configuration sequence number.

 If desired it would also be possible to add the LNet version number.

The extra numbers are sent as part of the status information for the loopback NI.

Use Case scenarios

The description of these scenarios will use uprev node as a synonym for a node with a multi-rail capable
Lustre version installed. A downrev node is a node with an older version of Lustre install, which does not
support the multi-rail capability. A multi-rail node has the additional interfaces needed to use the multi-rail
feature.

Static configurations to be tested include the following, which seem most likely to be encountered in the
field:

1. Uprev multi-rail client with downrev servers (MGS/MDS/OSS).
2. Uprev multi-rail servers with downrev clients.
3. Uprev multi-rail clients and servers.
4. Uprev multi-rail clients and servers, with uprev routers.
5. Uprev multi-rail clients and servers, with downrev routers.
6. Uprev multi-rail clients with downrev servers and downrev routers.

Configuration changes that we expect to encounter and which need to be tested:

1. Upgrading a multi-rail client from downrev to uprev, with uprev servers.
2. Downgrading a multi-rail client from uprev to downrev, with uprev servers.
3. Upgrading a router from downrev to uprev
4. Downgrading a router from uprev to downrev

9

Implicit in the scenarios above is that the full configuration (Net definition, NI definition, Peer NI definition,
selection policy definition) is done at once at startup. In addition to this, the following scenarios apply to a
cluster that is already up and running:

1. Add a Net, including NIs and Peer NIs.
2. Deleting a Net, NIs and Peer NIs
3. Adding routes
4. Deleting routes
5. Adding selection policies.
6. Deleting selection policies.

Edge Case scenarios

A mix of edge scenarios that we already can anticipate.

Edge cases for dynamic discovery tend to be race conditions, in particular involving the setup of the

datastructures for a peer. Mostly they can be handled by ensuring a peer_ni is created and findable

early in the process, and marked as initializing. But in some cases we may need to merge partially
constructed structures (case 3 below).

1. Two peers attempting to discover each other at the same time.
2. Two processes on a node triggering discovery of a single peer via the same peer NI.
3. Two processes on a node triggering discovery of a single peer via different peer NIs.

Edge cases for lnetctl driven configuration tend to involve tearing down in-use datastructures, and

inconsistent configuration, especially between nodes.

1. Removing a Peer NI while it is in use. Such an operation is allowed to fail, but we should be able
to characterize what "in use" means in that case, and what is required to render the Peer NI idle.

2. Removing a NI while it is in use. Such an operation is allowed to fail, same note applies.
3. Removing a Net while it is in use. Same note applies.
4. Various flavors of having nodes with inconsistent configuration. Maybe we can detect (some)

such cases, or at least characterize and document the kind of error messages or bad behavior
that will result.

10

Debugging Requirements

Since there isn't much to add in terms of High level design regarding the debugging requirements as
defined in the scope and requirements document, these requirements will not be detailed further in the
design document, but will be implemented in the code.

11

User Space
lnetctl

The lnetctl utility provides a command line interface. As part of the Multi-Rail project the following

commands shall be supported

 Adding/removing/showing Network Interfaces.

 Adding/removing/showing peers. cfg-070, cfg-075
o Each peer can be composed of one or more peer NIDs

 Adding/removing/showing selection policies

The lnetctl utility uses the DLC library API to perform its functions. Beside the standard command line

interface to configure different elements, configuration can be represented in a YAML formatted file.
Configuration can also be queried and presented to the user in YAML format. The configuration design
philosophy is to ensure that all config which can be queried from the kernel can be fed back into the
kernel to get the exact same result. cfg-045, cfg-050, cfg-060, cfg-065, cfg-170

DLC Library

The DLC library shall add a set of APIs to handle configuring the LNet kernel module. cfg-005, cfg-015

 lustre_lnet_config_ni() - this will be modified to add one or more network interfaces. cfg-

020, cfg-025

 lustre_lnet_del_ni() - this will be modified to delete one or more network interface

 lustre_lnet_show_ni() - this will be modified to show all NIs in the network. cfg-010

 lustre_lnet_config_peer() - add a set of peer NIDs

 lustre_lnet_del_peer() - delete a peer NID

 lustre_lnet_show_peers() - shows all peers in the system. Can provide a maximum

number of peers to show

 lustre_lnet_config_<rule type>_selection_rule() - add an NI selection policy rule

to the existing rules

 lustre_lnet_del_<rule type>_selection_rule() - delete an NI selection policy rule

using its assigned ID or matching criteria. cfg-095

 lustre_lnet_<rule type>_selection_rule() - show all NI selection policy rules

configured in the system, each given an ID.

 lustre_lnet_set_dynamic_discover() - enable or disable dynamic discovery.

 lustre_lnet_set_use_tcp_bonding() - enable or disable using TCP bonding.

LNetCtl IOCTL

The following new IOCTLs will be added:

 IOC_LNET_ADD_LOCAL_NI - adds exactly 1 local NI. If the Network doesn't exist then it will

implicitly be created. This can be called repeatedly to add more NIs.

 IOC_LNET_DEL_LOCAL_NI - removes exactly 1 local NI. If there are no more NIs in a network

the network is removed. This can be called repeatedly to remove more NIs.

12

 IOC_LNET_ADD_PEER_NI - adds a peer NID to an existing peer, if no peer exists with that peer

NID a new peer is created

 IOC_LNET_DEL_PEER_NI - delete a peer NID from an existing peer, if this is the last peer nid,

the peer is deleted.

 IOC_LNET_ADD_NET_SELECTION_RULE - add a selection policy rule to identify how to select a

network.

 IOC_LNET_ADD_NID_SELECTION_RULE - add a selection policy rule to identify how to select a

NID

 IOC_LNET_ADD_CONNECTION_SELECTION_RULE - add an NI selection policy rule to identify

how to select a connection between a local NI and remote NI.

 IOC_LIBCFS_DEL_<rule type>_SELECTION_RULE - remove a selection policy rule from the

global policy
o There are two ways to deal with selection policy rules. They can be translated directly

into the data structures, but I believe, moreover, they'll need to be maintained separately
and applied on new networks which are added later. For example, if you add a o2iblnd
network with 4 NIDs. Then you define the priority of this Network via a rule. If you remove
and re add this network, you want it to keep the same priority as configured.

o Also handling the selection policies as a set of rules, from a configuration perspective, is
the most intuitive method, since rules can be added, viewed and modified. It makes it
easier to view the system configuration as well.

 IOC_LIBCFS_SHOW_<rule_type>_SELECTION_RULES - show all the selection policy rules of

a specific type.

 IOC_LIBCFS_SET_DYN_DISCOVERY - enable/disable dynamic discovery.

 IOC_LIBCFS_SET_USE_TCP_BONDING - enable/disable usage of TCP bonding in the system.

This affects LNet globally.

Splitting Adding a Net and Adding an NI

There are two options to consider from configuration perspective

1. Adding a Network separately from adding a Network Interface
1. This will entail exposing this configuration separation to the user

1. Advantages
1. Provides a one-to-one mapping between configuration and internal

structure
2. Disadvantages

1. Allows the creation of empty networks, which have no use in the system
2. Adds to the complexity of configuration as the user needs to configure

network interfaces in two separate steps
3. Confuses the functionality. Ex: what happens if the user tries to add an

interface without adding a network first? Does the creation fail, or should
the network be created anyway?

4. There is no network configuration specific parameters, except the
priority, but even that's configured via the selection policies and not
directly.

5. Configuring a system should have a one-to-one mapping with actual
physical changes to the system. The network is a logical construct which
is a collection of network interfaces. The network interfaces are what
define an I/O point for LNet; therefore a sysadmin should configure a
Network Interface and whatever logic that runs in the kernel to get Multi-
Rail working should remain hidden from the user.

2. Adding a Network Interface only

13

1. The user can add a network interface and if the network is not configured it will be
created and the network interface is added to it. If the network exists then the Network
Interface is added to it.

1. The advantages and disadvantages are the reverse of the above.

Both the lnet_net and lnet_ni are not going to be created on a specific CPT, they will simply

use LIBCFS_ALLOC() to allocate these structures. The CPT association is maintained as a field in these

structures, and then used by the LND to allocate its structures. The only two fields which are currently

allocated per cpt is ni->ni_refs and ni->ni_tx_queues. Both of these are allocated on all the

CPTs.

Given this, the simplest approach is for user space to send the following information in the same
configuration message, or possibly in two separate IOCTLs, but the key point is that the API presented to
the user only allows Network Interface configuration:

1. Network to add:

1. lustre_lnet_config_net() takes the network name and interface name.

1. The DLC library can sanity check that the interface actually exists in the system,
before attempting to create the network.

2. If the interface specified doesn't exist then the kernel would reject this anyway,
and no need to send it down.

2. Network Interface to add:

1. lustre_lnet_config_net() takes the network interface name and as mentioned

above can do a sanity check to ensure the device is actually configured on the system.
2. matches the IP address pattern defined in the ip2nets parameters. This can be performed

completely in user space since DLC has the same visibility of configured network devices
and can perform the matches there. DLC can then proceed to create the exact network
interfaces in LNet.

1. This is an improvement to how ip2net matching currently happens. The current
algorithm returns the network and interface irregardless if the IP pattern matches

the IP address of the interface identified or not. For example "tcp1(eth0)

192.168.184.*" would return tcp1(eth0), even though eth0 IP is

192.184.182.3. It would be better if the NI is commissioned only if the IP

addresses of the interface matches the IP address pattern
3. if no explicit interface is configured, but an IP address pattern is present then commission

the interface which matches that rule.
1. Currently the behavior would be to simply return the network name and

commission the first interface configured in the system, even though its IP
address doesn't match the pattern defined in configuration.

In order to remain backwards compatible, two new IOCTLs will be added to add and remove local NIs. So
basically, there will be two ways of adding a network interface.

Conclusion

Based on feedback at the time of the writing, the approach by which only the configuration of local NI is
presented to the user and the addition or removal of a net is implicit, will be preferred.

Network to Network Interface CPT inheritance

Another open issue is the behavior regarding specifying CPT for Network Interfaces. At the end of the day
the CPT is associated with the Network Interface and not with the network. From a configuration
perspective there are the following options:

14

1. CPTs can only be associated with Network Interfaces and not with networks. No configuration
option is presented to the user. (recommended approach)

2. A network level CPT list can be specified. That will be resolved at user space in such a way that
interfaces with no associated CPT list will use the network level CPT list as the default.

3. The network level CPTs are stored in the kernel and are inherited by Network interfaces added to
the network if the network interfaces don't already have an associated CPT list.

The CPTs are creation time element and the best configuration philosophy is to allow the user to explicitly
specify it as part of the interface, therefore, it is the recommendation of this design to only allow
configuring NI level CPTs. This maintains the current behavior where CPTs are Network Interface
specific.

cfg-030 - the CPT is a creation time configuration and can not be changed afterwards. This requirement
will not be implemented.

TCP Bonding vs Multi-Rail

Currently the socklnd implements a form of TCP bonding. The sysadmin can configure a TCP network as
follows:

 tcp(eth0,eth1)

This will create a TCP network which bonds both eth0 and eth1 and the socklnd layer.

With the introduction of Multi-Rail, it is desirable to allow the TCP bonding feature to still be usable.
However, since Multi-Rail will use the same syntax above to define multiple LNet level network interfaces
on the same network, a new configuration value will be introduced to set whether to use TCP bonding or

to use Multi-Rail. use_tcp_bonding will be a global setting which when set to 1 all TCP networks

configured when use_tcp_bonding is enabled shall use socklnd bonding over Multi-Rail.

Setting use_tcp_bonding will not retroactivly impact already configured TCP networks. Therefore, any

attempts to add interfaces to a network which was configured using socklnd bonding, will fail. Otherwise if
a network uses Multi-Rail, the addition of network interfaces shall be allowed.

Userspace configuration Parsing vs in-kernel parser

Multi-Rail will introduce parsing network and peer configuration in the user space DLC Library which will
then use IOCTL to create the configuration objects in LNet. The in-kernel parser will remain largely
unchanged, except for some slight modifications to allow parsing network interface specific CPTs and
other general improvements.

Backwards Compatibility

Multi-Rail shall change the way network interfaces are configured. In order to maintain backwards
compatibility much code will need to be added to deal with different configuration formats. This will

inevitably lead to unmaintainable code. As a result multi-rail lnetctl/DLC will only work with multi-rail

capable LNet. This means that upgrading a system to Multi-Rail capable LNet will entail upgrading all
userspace and kernel space components. Older YAML configuration will still work with the newer Multi-
Rail capable nodes. bck-005, bck-010, bck-015, bak-20.

Multi-Rail nodes will continue to connect to non-multi-rail capable nodes and vice versa and when a Multi-
Rail capable node is connected to a cluster if dynamic discovery is enabled it will automatically be

15

discovered on first use, as described later in this document in the Dynamic Discovery section. bck-025,
bck-030

Adding local NI

lnetctl Interface

--net no longer needs to be unique, since multiple interfaces can be added to the
same network
--if: the same interface can be added only once. Moreover it can be defined as a set
of comma
separated list of interfaces
Ex: eth0, eth1, eth2
lnetctl > net add -h
Usage: net add --net <network> --if <interface> [--peer-timeout <seconds>]
 [--ip2nets <pattern>]
 [--peer-credits <credits>] [--peer-buffer-credits <credits>]

 [--credits <credits>] [--cpt <partition list>]

WHERE

net add: add a network
 --net: net name (e.g. tcp0)
 --if: physical interface (e.g. eth0)
 --ip2net: specify networks based on IP address patterns
 --peer-timeout: time to wait before declaring a peer dead
 --peer-credits: define the max number of inflight messages
 --peer-buffer-credits: the number of buffer credits per peer
 --credits: Network Interface credits
 --cpt: CPU Partitions configured net uses (e.g. [0,1])

--ip2net parameter can be used to configure multiple Network Interfaces based on an IP address

pattern.

Incidentally, the parsing algorithm exists in the kernel, therefore any modifications to the algorithm will

benefit both the lnetctl utility and the modparams. However no additions to module parameters are

being added as part of this project.

Look at the ip2nets section for a more detailed discussion.

YAML Syntax

cfg-035

net:
 - net: <network. Ex: tcp or o2ib>
 interfaces: <list of interfaces to configure>
 - intf: <physical interface>

 CPT: <CPTs associated with the interface>
 detail: <This is only applicable for show command. 1 - output detailed info.
0 - basic output>
 tunables:
 peer_timeout: <Integer. Timeout before consider a peer dead>
 peer_credits: <Integer. Transmit credits for a peer>
 peer_buffer_credits: <Integer. Credits available for receiving messages>
 credits: <Integer. Network Interface credits>
 seq_no: <integer. Optional. User generated, and is
 passed back in the YAML error block>

Example: configure the o2ib1 network with the ib0 and ib1 interfaces
this will result in two NIDs being configured on the o2ib1 network:

16

<ib0-IP>@o2ib1, <ib1-IP>@o2ib1

ib0 will be associated with CPTs 1 and 3 while ib1 will be associated with CPTs 4
and 5.
net:
 - net: o2ib1
 interfaces:
 - intf: ib0
 CPT: 1,3
 - intf: ib1
 CPT: 4,5

If no CPTs are configured then by default the interface is associated with all
existing CPTs,
which is the current behavior.

It is recommended to use the above syntax rather than the ip2net syntax for clarity.
The above YAML block will be parsed and the IOCTL structures populated.

DLC API

/*
 * lustre_lnet_config_net
 * Send down an IOCTL to configure a network Interface.
 *
 * net - the network name
 * intf - the interface of the network (ex: ib0). This could be a
 * comma separated list of interfaces.
 * - each interface is fed as a separate IOCTL to the kernel.
 * ip2net - this parameter allows configuring multiple networks.
 * it takes precedence over the net and intf parameters
 * peer_to - peer timeout
 * peer_cr - peer credit
 * peer_buf_cr - peer buffer credits
 * - the above are LND tunable parameters and are optional
 * credits - network interface credits
 * smp - cpu affinity
 * seq_no - sequence number of the request
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by caller

 */
int lustre_lnet_config_net(char *net, char *intf, char *ip2net,
 int peer_to, int peer_cr, int peer_buf_cr,
 int credits, char *smp,
 int seq_no,
 struct cYAML **err_rc);

/* This API will be modified to use IOC_LIBCFS_ADD_LOCAL_NI,
 * instead of the now deprecated IOC_LIBCFS_ADD_NET */
/* Deep error checking is left to the LNet module to perform. An example
 * of deep error checking is checking if an interface that's being added is a
 * duplicate interface */

ip2nets can be passed as a string to the above API and will be parsed and handled as part of the API.

DLC API Structures

The following structure is populated and sent down to the kernel. In order to remain backwards

compatible with older tools, lnet_ioctl_config_data will remain the same, and a new structure will

be added for the new way of configuring NIs. The new config NI structure can be extended with LND
specific structures which define the tunables. These structures can also be used for sending back
information about the NI and the LND tunables back to user space.

/*
 * To allow for future enhancements to extend the tunables
 * add a hdr to this structure, so that the version can be set
 * and checked for backwards compatibility. Newer versions of LNet

17

 * can still work with older versions of lnetctl. The restriction is

 * that the structure can be added to and not removed from in order
 * not to invalidate older lnetctl utilities. Moreover, the order of
 * fields should remain the same, and new fields appended to the structure
 *
 * That said all existing LND tunables will be added in this structure
 * to avoid future changes.
 */
struct lnet_ioctl_config_o2iblnd_tunables {
 struct libcfs_ioctl_hdr lico_tunable_hdr;
 ...List of all IB tunables...
};

struct lnet_ioctl_config_<lnd>_tunables {
 struct libcfs_ioctl_hdr licn_tunable_hdr;
 ...List of all LND tunables...
};

/*
 * lnet_ioctl_config_ni

 * This structure describes an NI configuration. There are multiple components
when
 * configuring an NI: Net, Interfaces, CPT list and LND tunables
 * A network is passed as a string to the DLC and translated using
libcfs_str2net()
 * An interface is the name of the system configured interface (ex eth0, ib1)
 * CPT is the list of CPTS
 * LND tunables are passed as an extended body
 */
struct lnet_ioctl_config_ni {
 struct libcfs_ioctl_hdr lic_cfg_hdr;
 __u32 lic_net;
 char lic_ni_intf[LNET_MAX_STR_LEN];
 __u32 lic_cpts[LNET_MAX_SHOW_NUM_CPT];
 char lic_bulk[0]
};

Removing local NI

lnetctl Interface

In order to remain backward compatible, two forms of the command shall be allowed.
The first will delete the entire network and all network interfaces under it.
The second will delete a single network interface

lnetctl > net del -h
net del: delete a network
Usage: net del --net <network> [--if <interface>]

WHERE:

 --net: net name (e.g. tcp0)
 --if: interface name. (e.g. eth0)

If the --if parameter is specified, then this will specify exactly one NI to delete
or a list

of NIs, since the --if parameter can be a comma separated list.
TODO: It is recommended that if the --if is not specified that all the interfaces
are removed.

 YAML Syntax

cfg-055

net:
 - net: <network. Ex: tcp or o2ib>

18

 interfaces:

 - intf: <interface name to delete>
 seq_no: <integer. Optional. User generated, and is
 passed back in the YAML error block>

Example: delete all network interfaces in o2ib1 network completely
net:
 - net: o2ib1

delete only one NI
net:
 - net: o2ib1
 interfaces:
 - intf: ib0
 - intf: ib1

DLC API

/*

 * lustre_lnet_del_net
 * Send down an IOCTL to delete a network.
 *
 * nw - network to delete or delete from
 * intf - the interfaces to delete. Could be a comma separated list.
 * NULL if user wishes to delete the entire network.
 * seq_no - sequence number of the request
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by caller
 */
int lustre_lnet_del_net(char *nw, char *intf, int seq_no,
 struct cYAML **err_rc);

/* Deep error checking is left to the LNet module to perform. An example
 * of deep error checking is checking if an interface exists before deletion */

/*
 * lustre_lnet_show_net
 * Send down an IOCTL to show networks.
 * This function will use the nw paramter to filter the output. If it's

 * not provided then all networks are listed.
 *
 * nw - network to show. Optional. Used to filter output. Could be a comma
separated list.
 * detail - flag to indicate if we require detail output.
 * seq_no - sequence number of the request
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by caller
 */
int lustre_lnet_show_net(char *nw, int detail, int seq_no,
 struct cYAML **show_rc, struct cYAML **err_rc);

 DLC API Structures

Same as the above.

Adding Peer NID

lnetctl Interface

lnetctl > peer add -h
Usage: peer add --nid <nid[, nid, ...]>

WHERE:

peer add: add a peer
 --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)

19

The --nid parameter can be a comma separated list of NIDs.

The CPT assigned to the peer NID will be specified as part of the lnet_nid2peer_locked().

All peer nids specified must be unique in the system. If a non-unique peer NID is added LNet shall fail the
configuration. cfg-080

YAML Syntax

peers:
 - nids:
 0: ip@net1
 1: ip@net2
 - nids:
 0: ip@net3
 1: ip@net4

The exact same syntax can be used to refresh the peer table. The assumption is
each peer in the YAML syntax contains all the peer NIDs.
As an example if a peer is configured as follows:

peers:
 - nids:
 0: 10.2.2.3@ib0
 1: 10.4.4.4@ib1

Then later you feed the following into the system

peers:
 - nids:
 0: 10.2.2.3@ib0
 1: 10.5.5.5@ib2

The result of this configuration is the removal of 10.4.4.4@ib1 from
the peer NID list and the addition of 10.5.5.5@ib2

In general a peer can be referenced by any of its NIDs. So when configuring all the
NIDs are used
to find the peer. The first peer that's found will be configured. If the peer NID
being added is
not unique, then that peer NID is ignored and an error flagged. The Index of the
ignored NID is
returned to the user space, and is subsequently reported to the user.

DLC API

/*
 * lustre_lnet_config_peer_nid
 * Configure a peer with the peer NIDs
 *
 * nids - peer NIDs
 * seq_no - sequence number of the command
 * err_rc - YAML structure of the resultnatn return code
 */

int lustre_lnet_config_peer_nid(char **nids, int seq_no, struct cYAML **er_rc);

DLC API Structures

/* Multiple peers can be defined in the configuration.
 * This will be fed into the kernel as one peer at a time.
 * The first NID in the list will be used as the key NID, and
 * will be passed in every IOCTL to LNet, so that LNet can
 * determine the peer to add the NID to.
 * pr_bulk will be used to pass back peer information to
 * user space.

20

 *

 * NOTE: that the first NID to be added is the key NID which means
 * pr_key_nid == pr_cfg_nid;
 */
struct lnet_ioctl_peer_cfg {
 struct libcfs_ioctl_hdr prcfg_hdr;
 lnet_nid_t prcfg_key_nid;
 lnet_nid_t prcfg_cfg_nid;
 char prcfg_bulk[0];
};

LNET_MAX_INTERFACES is the maximum number of NIDs a peer can have. Currently this value is set to

16, and will need to be increased to accomodate the requirement for larger SGI nodes.

Removing Peer NID

lnetctl Interface

lnetctl > peer del -h

WHERE:

peer add: add a peer
 --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)

Multiple nids can be deleted by using a comma separated list of NIDs in the --nid parameter. All NIDs

must be for the same peer.

YAML Syntax

peers:
 - nids:
 0: ip@net1

 1: ip@net2
 - nids:
 0: ip@net3
 1: ip@net4

This specifies the Peer NIDs that should be deleted. Each grouping of NIDs
is assumed to be the same NID. The peer is identified by any of its NIDs.
When a peer is found the NIDs specified for that peer is removed. If the NID
doesn't exist then an error is outputed and the index of that NID is returned
to user space, which formats it as a YAML error.

DLC API

/*
 * lustre_lnet_del_peer_nid
 * Delete the peer NIDs. If all peer NIDs of a peer are deleted
 * then the peer is deleted

 *
 * nids - peer nids
 * seq_no - sequence number of the command
 * err_rc - YAML structure of the resultant return code
 */
int lustre_lnet_del_peer_nid(char **nids, int seq_no, struct cYAML **er_rc);

/*
 * lustre_lnet_show_net
 * Send down an IOCTL to show peers.
 * This function will use the nids paramter to filter the output. If it's
 * not provided then all peers are listed.
 *

21

 * nids - show only Peer which have these NIDs.

 * detail - flag to indicate if we require detail output.
 * seq_no - sequence number of the request
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by caller
 */
int lustre_lnet_show_peer(char **nids, int detail, int seq_no,
 struct cYAML **show_rc, struct cYAML **err_rc);

DLC API Structures

Same as above

ip2nets

This project will deprecate the kernel parsing of ip2nets. ip2nets patterns will be matched in user space
and translated into Network interfaces to be added into the system.

 First interface that matches IP pattern will be used when adding a network interface

 If an interface is explicity specified as well as a pattern, the interface matched using the IP pattern
will be sanitized against the explicitly defined interface

o ex: tcp(eth0) 192.168.*.3 and there exists in the system eth0 ==

192.158.19.3 and eth1 == 192.168.3.3, then configuration will fail, because the

pattern contradicts the interface specified.
o A clear warning will be displayed if inconsistent configuration is encountered.

net:
 - net: <net>
 intf: <optional interface>

 pattern: <pattern>

Example:

net:
 - net: o2ib
 pattern: 192.168.2.*

If the node has the following IPoIB: 192.168.2.3 and 192.168.2.4, then
the result of this configuration are the following NIDs:
192.168.2.3@o2ib and 192.168.2.4@o2ib
DLC API will parse the pattern and perform the matching in user space,
then create the interfaces, after it has sanitized the configuration.

User Defined Selection Policies

One proposal is to define the net and NI priority as part of their creation. However, I'm still leaning toward
having the net priority and NI priority as separate rules, stored in a separate data structure. Once they are
configured they can be applied to the networks. The advantage of that is that rules are not strictly tied to
the internal constructs, but can be applied whenever the internal constructs are created and if the internal
constructs are deleted then they remain and can be automatically applied at a future time.

This makes configuration easy since a set of rules can be defined, like "all IB networks priority 1", "all
Gemini networks priority 2", etc, and when a network is added, it automatically inherits these rules.

Selection policy rules are comprised of two parts:

22

1. The matching rule
2. The rule action

The matching rule is what's used to match a NID or a network. The action is what's applied when the rule
is matched.

A rule can be uniquely identified using the matching rule or an internal ID which assigned by the LNet
module when a rule is added and returned to the user space when they are returned as a result of a show
command.

cfg-100, cfg-105, cfg-110, cfg-115, cfg-120, cfg-125, cfg-130, cfg-135, cfg-140, cfg-160, cfg-165

lnetctl Interface

Adding a network priority rule. If the NI under the network doesn't have

an explicit priority set, it'll inherit the network priority:
lnetctl > selection net [add | del | show] -h
Usage: selection net add --net <network name> --priority <priority>

WHERE:

selection net add: add a selection rule based on the network priority
 --net: network string (e.g. o2ib or o2ib* or o2ib[1,2])
 --priority: Rule priority

Usage: selection net del --net <network name> [--id <rule id>]

WHERE:

selection net del: delete a selection rule given the network patter or the id. If both
 are provided they need to match or an error is
returned.
 --net: network string (e.g. o2ib or o2ib* or o2ib[1,2])
 --id: ID assigned to the rule returned by the show command.

Usage: selection net show [--net <network name>]

WHERE:

selection net show: show selection rules and filter on network name if provided.
 --net: network string (e.g. o2ib or o2ib* or o2ib[1,2])

Add a NID priority rule. All NIDs added that match this pattern shall be assigned
the identified priority. When the selection algorithm runs it shall prefer NIDs with
higher priority.
lnetctl > selection nid [add | del | show] -h
Usage: selection nid add --nid <NID> --priority <priority>

WHERE:

selection nid add: add a selection rule based on the nid pattern
 --nid: nid pattern which follows the same syntax as ip2net
 --priority: Rule priority

Usage: selection nid del --nid <NID> [--id <rule id>]

WHERE:

selection nid del: delete a selection rule given the nid patter or the id. If both
 are provided they need to match or an error is
returned.
 --nid: nid pattern which follows the same syntax as ip2net
 --id: ID assigned to the rule returned by the show command.

23

Usage: selection nid show [--nid <NID>]

WHERE:

selection nid show: show selection rules and filter on NID pattern if provided.
 --nid: nid pattern which follows the same syntax as ip2net
Adding point to point rule. This creates an association between a local NI and a
remote
NID, and assigns a priority to this relationship so that it's preferred when
selecting a pathway..
lnetctl > selection peer [add | del | show] -h
Usage: selection peer add --local <NID> --remote <NID> --priority <priority>

WHERE:

selection peer add: add a selection rule based on local to remote pathway
 --local: nid pattern which follows the same syntax as ip2net
 --remote: nid pattern which follows the same syntax as ip2net
 --priority: Rule priority

Usage: selection peer del --local <NID> --remote <NID> --id <ID>

WHERE:

selection peer del: delete a selection rule based on local to remote NID pattern or id
 --local: nid pattern which follows the same syntax as ip2net
 --remote: nid pattern which follows the same syntax as ip2net
 --id: ID of the rule as provided by the show command.

Usage: selection peer show [--local <NID>] [--remote <NID>]

WHERE:

selection peer show: show selection rules and filter on NID patterns if provided.
 --local: nid pattern which follows the same syntax as ip2net
 --remote: nid pattern which follows the same syntax as ip2net

the output will be of the same YAML format as the input described below.

YAML Syntax

Each selection rule will translate into a separate IOCLT to the kernel.

Configuring Network rules
selection:
 - type: net
 net: <net name or pattern. e.g. o2ib1, o2ib*, o2ib[1,2]>
 priority: <Unsigned integer where 0 is the highest priority>

Configuring NID rules:
selection:
 - type: nid
 nid: <a NID pattern as described in the Lustre Manual ip2net syntax>
 priority: <Unsigned integer where 0 is the highest priority>

Configuring Point-to-Point rules.

selection:
 - type: peer
 local: <a NID pattern as described in the Lustre Manual ip2net syntax>
 remote: <a NID pattern as described in the Lustre Manual ip2net syntax>
 priority: <Unsigned integer where 0 is the highest priority>

to delete the rules, there are two options:
1. Whenever a rule is added it will be assigned a unique ID. Show command will
display the
unique ID. The unique ID must be explicitly identified in the delete command.
2. The rule is matched in the kernel based on the matching rule, unique identifier.
This means that there can not exist two rules that have the exact matching
criteria

24

Both options shall be supported.

Flattening rules

Rules will have a serialize and deserialize APIs. The serialize API will flatten the rules into a contiguous
buffer that will be sent to the kernel. On the kernel side the rules will be deserialzed to be stored and
queried. When the userspace queries the rules, the rules are serialized and sent up to user space, which
deserializes it and prints it in a YAML format.

DLC API

/* This is a common structure which describes an expression */
struct lnet_match_expr {
 __u32 lme_start;
 __u32 lme_end;
 __u32 lme_incr;

 char lme_r_expr[0];
};

struct lnet_selection_descriptor {
 enum selection_type lsd_type;
 char *lsd_pattern1;
 char *lsd_pattern2;

 union {
 __u32 lsda_priority;
 } lsd_action_u;
};

/*
 * lustre_lnet_add_selection
 * Delete the peer NIDs. If all peer NIDs of a peer are deleted
 * then the peer is deleted
 *
 * selection - describes the selection policy rule

 * seq_no - sequence number of the command
 * err_rc - YAML structure of the resultant return code
 */
int lustre_lnet_add_selection(struct selection_descriptor *selection, int seq_no,
struct cYAML **er_rc);

DLC API Structures

Defined below

25

Kernel Space

Threading model

Figure 3: LNet Threading Model

Description

Multi-Rail does not change the LNet threading model and the locking will remain largely the same.
However it changes the structures which are accessed from the different thread contexts.

26

Locking

The current code adds peers opportunistically, the first time a message is sent to or received from a peer.
The peer table is split over the CPTs allowed to lnet, and a peer's NID is used to pick a specific CPT.

There is a per-CPT set of spinlocks (lnet_net_lock/lnet_net_unlock), and the spinlock for a

CPT must be held when the peer table of that CPT is traversed or modified. Note that the current code
does not create peer structs for peers not connected to a local network.

The ioctls that modify or query the LNet configuration use the ln_api_mutex in the the_lnet for

serialization.

Extending NUMA awareness

Lustre depends on the CPT mechanism of the libcfs kernel module to provide it with information on
system topology. In the long run, these interfaces may be replaced with the Linux-native NUMA
interfaces, but doing so is far outside the scope of this project. Instead the CPT mechanism will be
extended.

NUMA distance

The concept we need to capture is NUMA distance, which is a measure of the cost of a CPU in one node

accessing memory in another. The native interface for this is node_distance(). On an x86-64 machine

the distance reported by node_distance() is typically derived from information provided by the BIOS.

Accessing memory on the same NUMA node has some cost, and the reported distance of a node to itself

is larger than 0. The value returned by node_distance() is a positive integer, larger means larger

distance. The distance values have no assigned meaning beyond the ability to compare them.

When all CPTs are entirely restricted to a single node, the distance reported between CPTs is the same
as the distance between the nodes that the CPTs live on. But a CPT can span multiple nodes, which
raises the question what the distance should be in that case. The options are: minimum, average, and
maximum of the distances between the nodes in the CPTs. Using the minimum understates the distance.
Using the average depends on addition and division of numbers with no assigned meaning to yield a
meaningful result. Therefore we'll use the maximum of the distances, which also has the advantage of
being comparatively simple to calculate.

New CPT Interfaces

The proposal is to add the following functions to the CPT subsystem:

 cfs_cpt_distance(struct cfs_cpt_table *cptab, int cpt1, int cpt2) returns

the distance between cpt1 and cpt2. If either of cpt1 or cpt2 is CFS_CPT_ANY then the

largest distance in the system is returned – this is consistent with using the maximum distance
when a CPT spans multiple nodes.

 cfs_cpt_of_node(struct cfs_cpt_table *cptab, int node) returns the CPT that

contains node. If multiple CPTs contain CPUs from the same node the same CPT number will be

returned each time.

The implementation is to add a distance table to struct cfs_cpt_table and populate this when the

CPT table is created. For debugging purposes /proc/sys/lnet/cpu_partition_distance

pseudo-file reports the content of the distance table in human-readable form.

27

More interfaces will be added if we find we need them.

Memory Descriptors

LNet uses a Memory Descriptor (MD) to describe the buffers used by LNetGet() and LNetPut(). An

MD is built by specifying the parameters in a lnet_md_t, then calling LNetMDAttach()

or LNetMDBind() to create the internal struct lnet_libmd. A CPT number is encoded in the handle

that identifies an MD. This CPT is chosen through the call to lnet_md_link() in LNetMDAttach()

or LNetMDBind(). The present code works as follows:

 LNetMDAttach() derives the CPT from the Match Entry (ME) handle passed in. The ME in turn

derives its CPT from the match table for the portal.

o For a wildcard portal, LNET_INS_LOCAL picks the CPT from the current thread,

otherwise the portal number is used.

o For a unique portal, the NID of the peer is used using lnet_cpt_of_nid() to match

the NID to a CPT.

 lnet_cpt_of_nid() in turn uses lnet_nid_cpt_hash() to reduce a NID to

a valid CPT number.
 When a CPT list has been specified for a NI, the CPT is chosen from that list.

 LNetMDBind() picks the CPT from the current thread.

We can either add an explicit CPT field to lnet_md_t and struct lnet_libmd, or build on the

existing CPT-aware interfaces and modify how they pick the CPT to better match our requirements.

Primary NIDs

The assumption that a peer can be identified by a single, unique, NID is deeply embedded in parts of the
code. Unfortunately these include the public interfaces of LNet.

 match entries (struct lnet_match_info) have the peer's NID is one of the possible match

criteria.

 events (lnet_event_t), identify the initiator peer by its NID.

For match entries we will translate from the source NID to the primary NID prior to checking for a match.
There is an exception in early Discovery because then the primary NID of the peer is not yet known.
However, this case is completely contained within LNet.

For events, LNet will provide the primary NID in the initiator field. Event handlers may also need the

actual source NID so a source field will be added to lnet_event_t.

The primary user of LNet in the Lustre code is PtlRPC and the OBD and LDLM layer built on top of that
which are strongly intertwined with PtlRPC. (Both of these peek into PtlRPC data structures.)

 The c_peer field of struct ptlrpc_connection identifies the peer by a NID.

 The rq_peer field of struct ptlrpc_request identifies the peer by a NID.

The rq_peer field is set to the primary NID. Since we want PtlRPC to be able to route responses to a

specific source NID, a new field, rq_source is added for that purpose.

28

ptlrpc_uuid_to_peer() may need to be changed to map the selected peer NID to the primary NID of

that peer.

target_handle_connect() is a place outside PtlRPC that peeks into PtlRPC datastructures to find a

peer's NID. Setting rq_peer to the primary NID should suffice.

ldml_flock_deadlock() looks at c_peer when doing deadlock detection.

IOCTL Handling

Adding NI

Handling of the new ADD_NI IOCTL will be done in the module.c:lnet_ioctl()

There will not be any parsing required, as all the string parsing will be done in user space.

lnet_add_ni(nid, tunables...)
{
 net = NID2NET(nid);
 /* lnet_find_or_create_net()
 * if net is not created already create it.
 * if net was just created run the selection net rules using:
 * lnet_selection_run_net_rule()
 */
 rc = find_or_create_net(net, &n);
 if (rc != 0)
 return -rc;

 /* make sure that nid doesn't already exist in that net */
 rc = add_ni_2_net(nid, tunables);
 if (rc != 0)

 /* delete net if empty */
 lnet_del_net(net);
 return -rc;
 /* run applicable rules */
 /* lnet_selection_run_nid_rules()
 * Given the nid of the newly added ni, see if that nid matches any defined
rules and
 * assign the priority accordingly
 */
 if (lnet_selection_run_nid_rules(ni->nid, &ni->priority))
 /* print an error and increment error counters, but don't fail */
 /* lnet_selection_run_peer_rules()
 * Given the newly added ni, see if any of the peer rules match the new
NI
 * and create an association between that ni and any remote peer which
matches
 * the rule. So if there already exists a rule that matches both this new NI
and
 * an existing peer then create an association between the pair.

 */
 if (!lnet_selection_run_peer_rules(ni, 0))
 /* print an error and increment error counters, but don't fail */
 /* startup the LND with user specified tunables */
 rc = startup_lndni(ni, tunables...);
 if (rc != 0)
 return -rc;
}

29

Removing NI

Handling of the new DEL_NI IOCTL will be done in the module.c:lnet_ioctl()

There will not be any parsing required, as all the string parsing will be done in user space.

lnet_del_ni(nid)
{
 /* 0@<network> basically tells us to delete the entire network and all its NIs
*/
 if (nid == 0@<network>) {
 net = NID2NET(nid);
 if (net is invalid)
 return -EINVAL;

 /* lnet_dyn_del_ni() will need to be modified to iterate through all
 * NIs in the net and shutdown each one separately. It will be

appropriately
 * renamed lnet_dyn_del_nis().
 * lnet_dyn_del_nis() -> lnet_dyn_del_ni()
 */
 rc = lnet_dyn_del_nis(net);
 return rc;
 }

 ni = nid_2_ni(nid);

 /* clear any references to peer_nis that might have been set
 while running peer rules */

 rc = lnet_dyn_del_ni(ni);

 /* delete the network if it's empty */
 lnet_del_net(net);
 return rc;
}

Adding Peer NID

bool lnet_is_peer_nid_unique(nid)
{
 peer_nis = peer_ni_hash_table[lnet_nid2peerhash(nid)];
 for (peer_ni in peer_nis) {
 if (peer_ni->nid == nid)
 return false;
 }
 return true;
}

int lnet_peer_add_nid(peer, nid)
{
 net = NULL;
 if ((net = peer->net_array[NID2NET(nid)]) == NULL) {
 LIBCFS_ALLOC(net, sizeof(*net));

 if (net == NULL)
 return -ENOMEM;
 }

 peer_ni = lnet_peer_create_ni(nid);
 if (peer_ni == NULL)
 return -ENOMEN;

 /* run the nid rules on that nid */
 if (lnet_selection_run_nid_rules(nid, &peer_ni->priority) != 0)
 /* output an error but keep on going */

 if (lnet_selection_run_peer_rules(0, peer_ni) != 0)

30

 /* output an error but keep on going */

 list_add_tail(peer_ni->nid_list, net->peer_nid_list);
}

int lnet_add_nid_2_peer(nid_id, nid)
{
 if (nid_id != NULL) {
 peer = lnet_find_peer(nid_id);
 if (peer == NULL)
 return -EINVAL;
 }

 /* verify that nid being added is unique */
 if (!lnet_is_peer_nid_unique(nid))
 return -EINVAL;

 /* allocate a peer if we couldn't find one using the nid_id provided */
 if (peer == NULL) {
 LIBCFS_ALLOC(peer, sizeof(*peer));

 if (peer == NULL)
 return -ENOMEM;
 rc = lnet_peer_add_nid(peer, nid_id);
 if (rc != 0) {
 /* delete the peer that was just created */
 return -rc;
 }
 }

 rc = lnet_peer_add_nid(peer, nid);
 if (rc != 0)
 return -rc;

 return 0;
}

Removing Peer NID

int lnet_del_peer_nid(nid)
{
 /* TODO: map from nid to peer_ni directly */
 peer_nis = peer_ni_hash_table[lnet_nid2peerhash(nid)];
 for (peer_ni in peer_nis) {
 if (peer_ni->nid == nid) {
 /* cleanup the peer_ni and related info:
 - any links to other local nis
 free the peer_ni.
 If this is the last peer_ni in the peer delete the peer
also
 */
 return 0;
 }
 return -EINVAL;
 }
}

User Defined Selection Policies

User-defined selection policy rules will use the same ip2nets syntax already described in the manual,

with the change defined below. The key difference is that this syntax will be parsed in user space and a
structural representation will be passed down to the kernel. The kernel will keep the rules in this structural
format and will walk the rule tree when applying them to NIDs and local NIs being added or discovered.

31

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }

<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> } [<w>]
<net-spec> :== <network> ["(" <iface-list> ")"]
<network> :== <nettype> [<number>]
<nettype> :== "tcp" | "gni" | "openib" | ...
<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>
<r-expr> :== <number> | "*" | "[" <r-list> "]"
this allows the interface to define a set of CPTs to be associated with.
<iface-list> :== <interface> ["[" <r-expr> "]" "," <iface-list>]
<r-list> :== <range> ["," <r-list>]
<range> :== <number> ["-" <number> ["/" <number>]]
<comment :== "#" { <non-net-sep-chars> }
<net-sep> :== ";" | "\n"
<w> :== <whitespace-chars> { <whitespace-chars> }

Structure Representation

The syntax defined above will be parsed into an intermediary form, that will be passed to the kernel. The
intermediary form is described diagramatically below.

The diagrams below describe the <r-expr> form. The <r-expr> can be used when defining a network,
inteface and an IP.

Example:

o2ib0, o2ib*, o2ib[1,2], o2ib[1-10/2], o2ib[1-10/2, 13, 14]

or

192.168.0.[1-10/2, 13, 14]@nettype
Refer to Lustre Manual for more examples

or

eth[1,2,3], eth[1-4/2]

32

Expression Structural Form Description

Figure 4: syntax descriptor

An expression can be a number:

[<num>, <expr>]
represented as:
start == end == NUM

An express can be a wild card

[*, <expr>]
represented as:
start == 0
end == U32_MAX
INCR == 1

An expression can be a range

[<start> - <end>, <expr>]
represented as:
start == START_NUM
end == END_NUM
INCR == 1

An expression can be a range and an increment

[<num-start> - <num-end>/<incr>,
<expr>]
represented as:
start == START_NUM
end == END_NUM
INCR == INCREMENT VALUE

When passing the built structural format to the kernel it will need to be serialized, in order not to pass
pointers between user space and kernel space.

/* The following structures are used to transmit a structural expression
 * to the kernel in flattened form */

struct lnet_offset_descriptor {
 __u32 lodesc_size
 __u32 lodesc_offset;
};

/* address descriptor. Addresses depend on the LND type. Gemini uses hex
 * while IB and TCP use IP addresses. In case of other NIDs which do not
 * use dotted quads, but use only one integer, the below structure can
 * also be used to represent these NIDs. The code to handle the NIDs will
 * take into account the type of the LND and will handle using the below

 * structure appropriately. To isolate these changes, we will consider adding
 * LND level callbacks to handle NID specific operations, to keep LNet LND
 * agnostic. */
struct lnet_address_descriptor {
 struct lnet_offset_descriptor lad_octets[4];
};

struct lnet_ioctl_selection_net_rule {
 char
 lisn_net_name[LNET_MAX_STR];
 __u32 lisn_priority;
 struct lnet_offset_descriptor lisn_net_descr;
};

33

struct lnet_ioctl_selection_nid_rule {
 char
 lisn_net_name[LNET_MAX_STR];
 __u32 lisn_priority;
 struct lnet_ip_descriptor lisn_ip_descr;
};

struct lnet_ioctl_selection_peer_rule {
 char
 lisp_net_name[2][LNET_MAX_STR];
 __u32 lisp_priority;
 struct lnet_ip_descriptor lisp_nid_descrs[2];
};

enum lnet_selection_rule_type {
 LNET_SELECTION_NET_RULE = 0,
 LNET_SELECTION_NID_RULE,
 LNET_SELECTION_PEER_RULE,
};

struct lnet_ioctl_selection_rule {
 enum lnet_selection_rule_type lisr_selection_type;
 union {
 struct lnet_ioctl_selection_net_rule lisr_net_rule;
 struct lnet_ioctl_selection_nid_rule lisr_nid_rule;
 struct lnet_ioctl_selection_peer_rule lisr_peer_rule;
 } lisr_u;

 char
 lisr_selection_bulk[0];
}

/* These structures are used to store rules internal to the kernel */
struct lnet_selection_net_rule {
 char
 lsnr_net_name[LNET_MAX_STR];
 __u32 lsnr_net_priority;
 struct lnet_selection_match_expr *lsrn_net_expr;
}

/* for simplicity the nid address will not allow expressions in the network part of
the NID */
/* <expr>.<expr>.<expr>.<expr>@network */
struct lnet_selection_nid_addr {
 char
 lsna_net_name[LNET_MAX_STR];
 struct lnet_selection_match_expr *lsna_octets[4];
};

struct lnet_selection_nid_rule {
 __u32 lsnr_priority;
 struct lnet_selection_nid_addr *lsnr_nid_addr;
};

struct lnet_selection_peer_rule {
 __u32 lsnp_priority;
 struct lnet_selection_nid_addr *lsnp_nid_addr[2];
};

struct lnet_selection_rule {
 struct list_head lsr_list;
 enum lnet_selection_rule_type lsr_rule_type;
 union {
 struct lnet_selection_net_rule *lsr_net_rule;
 struct lnet_selection_nid_rule *lsr_nid_rule;
 struct lnet_selection_peer_rule *lsr_peer_rule;
 } lsr_u;
};

/* The following APIs add the rules */

34

int lnet_selection_add_net_rule(char *net_name, struct lnet_selection_match_expr

*expr, __u32 priority);
int lnet_selection_add_nid_rule(struct lnet_selection_nid_rule *nid_rule, __u32
priority);
int lnet_selection_add_peer_rule(struct lnet_selection_nid_rule *nid_1_rule,
 struct lnet_selection_nid_rule
*nid_2_rule,
 __u32 priority);

int lnet_selection_add_rule(struct lnet_ioctl_selection_rule *selection_rule)
{
 switch (selection_rule->lisr_selection_type):
 LNET_SELECTION_NET_RULE:
 rc = lnet_selection_expand_net_expr(
 &selection_rule->lisr_u.lisr_net_rule,
 selection_rule->lisr_bulk,
 &expr);
 /* check rc */
 lnet_selection_add_net_rule(
 selection_rule->lisr_u.lisr_net_rule.lisn_net_name,

 selection_rule->lisr_u.lisr_net_rule.lisn_priority,
 expr);
 /* check rc */
 break;
 LNET_SELECTION_NID_RULE:
 rc = lnet_selection_expand_nid_expr(
 &selection_rule->lisr_u.lisr_nid_rule,
 selection_rule->lisr_selection_bulk,
 &nid_expr);
 /* check rc */
 lnet_selection_add_nid_rule(
 selection_rule->lisr_u.lisr_nid_rule.lisn_priority,
 nid_expr);
 /* check rc */
 break;
 LNET_SELECTION_PEER_RULE:
 rc = lnet_selection_expand_peer_expr(
 &selection_rule->lisr_u.lisr_peer_rule,
 selection_rule->lisr_bulk,
 &nid1_expr, &nid2_expr);

 /* check rc */
 lnet_selection_add_peer_rule(
 selection_rule->lisr_u.lisr_peer_rule.lisp_priority,
 nid1_expr, nid2_expr);
 /* check rc */
 break;
 default:
 break;
}

/*
 * lnet_selection_run_peer_rules
 * Run the peer rules until one matches and stop.
 * Given a local_ni and a peer_ni, walk the peer rules and try to find a rule which
 * matches both local_ni and peer_ni nids. Stop on the first found rule.
 * When match is found, assign a pointer to the peer_ni in the local_ni and vice
versa.
 * Whenever sending from that local_ni, that peer_ni is used, unless it's down.
 *

 * local_ni - local ni to match
 * peer_ni - peer ni to match.
 * Return 0 on success or an appropriate -error on failure.
 */
int lnet_selection_run_peer_rules(struct lnet_ni *local_ni, struct lnet_peer_ni
*peer_ni);

/*
 * lnet_selection_run_nid_rules
 * Run the nid rules until one matches and stop.
 * Given a nid, walk the nid rules and try to find a rule which matches
 * Stop at the first one found. When match is found assign the priority value
 * to the OUT parameter.

35

 *

 * nid - nid to match
 * priority [OUT] - priority to assign the nid
 *
 * Return 0 on success or an appropriate -error on failure.
 */
int lnet_selection_run_nid_rules(lnet_nid_t nid, __u32 *priority);

/*
 * lnet_selection_run_net_rules
 * Run the net rules until one matches and stop.
 * Given a net, walk the net rules and try to find a rule which matches.
 * Sop at the first one found. When match is found assign the priority to the
 * net->priority
 *
 * net - net to match
 *
 * Return 0 on success or an appropriate -error on failure.
 */
int lnet_selection_run_net_rules(struct lnet_net *net);

/* this functions are called on every local_ni, peer_ni or net created */

Dynamic Behavior

Overview

Dynamic behavior is mainly concerned with the following:

 Sending messages (LNetPut(), LNetGet())

 Receiving messages (lnet_parse())

 Dynamic Peer Discovery ("Discovery" for short).

Sending Messages

The entry points into LNet are via the APIs:

 LNetPut() - initiate an asynchronous PUT operation

 LNetGet() - initiate an asynchronous GET operation

An LNet Put operation consist of an LNET_MSG_PUT message with the payload, and an LNET_MSG_ACK

that confirms receipt of the payload. The caller of LNetPut() can indicate that it doesn't need an ACK to

be sent.

An LNet Get operation consists of an LNET_MSG_GET message, and an LNET_MSG_REPLY that contains

the payload or error code.

At the LNet level, we'll be talking about message/reply pairs: message being PUT or GET, reply being ACK

or REPLY. An LNet reply is sent to the same NID that the message was sent from: the way interface

credits are managed requires this. This means that the NI selection algorithm cares whether we are
looking at a message or a reply, and the algorithm must be bypassed in the latter case.

The RPCs used by PtlRPC are built on top of LNetGet() and LNetPut() calls. An RPC consists of a

request and a response. A request is typically a Put, and the response is another Put, which may then
trigger a Get to pull additional data from the remote node. A PtlRPC response can be sent to a different

36

NID than where the request was sent from, though this is usually only desirable if there some problem
sending to the original NID.

The callers of LNetGet() and LNetPut() need to be reviewed. The interpretation of the self parameter

will be somewhat different, and the difference matters. The distinction is between sending from any
available NI to any available peer NI, versus a strong preference for a particular NI/peer NI pair.

Sending a message may trigger Discovery.

NUMA Awareness

NUMA information needs to be provided by the higher level layers when calling LNetPut() and

LNetGet(). This NUMA information is then used by selection API to determine the optimal local_ni and

peer_ni pair to use for sending a message.

To avoid altering these APIs, since they are used by modules outside of Lustre, the NUMA information

will be added to struct lnet_libmd. See Memory Descriptors above for a discussion of this point.

Since the md is attached to the msg and the msg is already part of the lnet_send() parameters, there

will be no need to modify the lnet_send() API.

The logic of the lnet_send() API will need to change however.

In summary, lnet_send(), given a destination NID (in the msg) and a src_ni (or LNET_NID_ANY), must

determine the best local NI to use based on the NUMA criteria in the MD and the best destination NID to
use.

The pseudo code below describes the algorithm in more details. snd-005, snd-010, snd-020, snd-030,
snd-035, snd-040, snd-045, snd-050, snd-055, snd-060, snd-065, snd-070, snd-075

snd-015 - NUMA APIs were added in some form, at least since 2.6.1; and therefore will pose no problems
for this project.

Resending Messages

LNet has been designed on the assumption that a message is sent once, and failure is reported either

immediately via the return value of LNetGet() or LNetPut(), or later via the status reported in

the LNET_EVENT_SEND event. When this event is posted the memory used for the message can be

reused. We have little choice but to rely on the LND to tell LNet whether a message was successfully
sent. Detecting send failure will therefore be best-effort.

Any attempt to resend a message needs to hook into lnet_finalize(), which is the function that

releases the buffers and posts LNET_EVENT_SEND. The simplest approach is to modify this function

so that on error it doesn't release the buffers nor posts the event, but instead initiates resending the
message.

This can be extended by adding a timeout to a message being sent, and then initiate a retry if the timeout

expires before LNET_EVENT_SEND has been posted. Now the same message may be successfully sent

multiple times if there is some network delay. lnet_finalize() must track whether another attempt to

send this message is still in progress. This is in addition to the code initating resending a message on a
failure signaled by the LND. Note that interface and peer credits cannot be released until after the LND

37

has signaled a failure by calling lnet_finalize(), and LNET_EVENT_SEND cannot be posted until all

concurrent attempts to send a message have been resolved. Progress is limited by the slowest success
or failure. This makes the value of the extra complexity involved somewhat doubtful.

Local NI Health

A local NI can be marked bad if the LND signals a failure of the interface. This would be a hard failure. A

timer can be used to re-check periodically – this is something Fujitsu implemented for the o2ib LND and

worth copying.

We can also mark it unhealthy if attempts to send messages through this NI fail, especially if the failures
exceed some set rate. One method is to keep a decaying sum of soft failures per NI, and comparing the
sums for each NI when selecting which local NI to use.

Peer NI Health

A peer NI can be marked unhealthy when we see failures when sending a message to that peer NI. For
apparent soft failures this can be rate based, and a decaying sum of failures could be used to select
between different peer NIs.

For apparent hard failures it is worth noting that PING/PUSH information contains the status of each
interface. This is a mechanism by which presence of and recovery from hard failures can be
communicated. Rather than have a peer actively push such information, it is likely better to have nodes
pull it when they need it. Such a pull (done by pinging the peer, of course) can be done occasionally as
long as other, healthy, peer NIs are available.

Selection Algorithm Pseudo-code

The following pseudo-code illustrates how a local NI, peer NI pair can be selected in a reasonably
efficient manner.

 # Find the peer via its nid.
 peer_ni = lookup(peernid);
 peer = peer_ni->peer_net->peer;

 # Keep track of the best selection so far.
 best_peer_net = NULL;
 best_ni = NULL;
 best_peer_ni = NULL;
 best_gw = NULL;

 # Keep track of the best selection criteria seen
 best_net_priority = LOWEST_PRIORITY;
 best_numadist = maxnumadist(cptab); # Worst in system.
 preferred = false;
 best_peer_credits = INT_MIN;
 best_credits = INT_MIN;

 # Find a ni by walking the peer's peer_net_list,
 # then walking the releated net's ni_list.
 for (peer_net in peer->peer_net_list) {
 if (peer_net_not_connected(peer_net))
 continue;
 # If all peer_ni on this peer_net are unhealthy,
 # then the peer_net itself is marked unhealthy.
 if (peer_net_not_healthy(peer_net))
 continue;
 # Smaller priority value means higher priority
 # Lower-priority networks can be skipped if a viable

38

 # network has been found. If the peer_net_list is

 # sorted by priority we can break out of the loop here.
 if (best_peer_net && best_net_priority < peer_net->priority)
 continue;
 # Candidate peer_net, look at each ni connecting to it
 net = peer_net->net;
 # The assumption is that a network is either direct-connected
 # or routed, but never both. Note that you can give a direct
 # connected network a lower (network) priority than a routed
 # network, in which case the routed network will be preferred.
 net_gw = NULL;
 if (net_is_routed(net)) {
 # Look for a suitable gateway.
 # As written this combines lnet_peer_ni with lnet_route
 for (gw in net->gateway_list) {
 if (gw_not_healthy(gw))
 continue;
 if (!net_gw) {
 net_gw = gw;
 continue;

 }
 if (net_gw->priority < gw->priority)
 continue;
 if (net_gw->hops < gw->hops)
 continue;
 if (net_gw->txqnob < gw->txqnob)
 continue;
 if (net_gw->txcredits > gw->txcredits)
 continue;
 # The seq is the final tiebreaker
 if (net_gw->seq - gw->seq <= 0)
 continue;
 # Bump seq so that next time the tie breaks
 # the other way
 net_gw->seq = gw->seq + 1;
 net_gw = gw;
 }
 # No gateway, no route
 if (!net_gw)
 continue;

 # At least as good as the globally best gw?
 if (best_gw) {
 if (best_gw->priority < net_gw->priority)
 continue;
 if (best_gw->hops < net_gw->hops)
 continue;
 if (best_gw->txqnob < net_gw->txqnob)
 continue;
 if (best_gw->txcredits > net_gw->txcredits)
 continue;
 }
 # Local connected net for gw
 net = net_gw->net;
 }
 # Look for ni on net
 for (ni in net->ni_list) {
 if (ni_not_healthy(ni))
 continue;
 # NUMA distance between ni and md (and current

 # thread), larger is worse.
 dist = numadistance(cptab, ni, md);
 if (dist > best_numadist)
 continue;
 # Select on NUMA distance, then local credits
 # Negative credits imply queued messages
 # A sequence number as a final tiebreaker/load
 # spreader
 if (dist < best_numadist) {
 best_numadist = dist;
 } else if (ni->credits <= best_credits) {
 continue;
 } else if (best_ni) {

39

 if (best_ni->seq - ni->seq <= 0)

 continue;
 best_ni->seq = ni->seq + 1;
 }
 best_peer_net = peer_net;
 best_net_priority = peer_net->priority;
 best_ni = ni;
 best_credits = ni->credits;
 best_gw = net_gw;
 }
 }
 # If there is no best_ni we've failed.
 if (!best_ni)
 failure;
 # Look for a peer_ni connected to the best_ni by walking
 # the peer_ni list of the best_peer_net.
 for (peer_ni in best_peer_net->peer_ni_list) {
 if (peer_ni_not_healthy(peer_ni))
 continue;
 # Is the best_ni a preferred ni of this peer_ni?

 ni_is_pref = (best_ni in peer_ni->preferred_ni_set);
 # If no preferred ni has been seen yet, and this ni
 # is preferred by this peer_ni, pick this peer_ni.
 # If a preferred ni has been seen, and this ni is
 # not preferred by this peer_ni, skip it.
 # Otherwise, select on available peer_credits.
 # Finally, a sequence number to rotate load
 if (!preferred && ni_is_pref) {
 preferred = true;
 } else if (preferred && !ni_is_pref) {
 continue;
 } else if (peer_ni->peer_credits <= best_peer_credits) {
 continue;
 } else if (best_peer_ni) {
 if (best_peer_ni->seq - peer_ni->seq <= 0)
 continue;
 best_peer_ni->seq = peer_ni->seq + 1;
 }
 # We have (new) favorite.
 best_peer_ni = peer_ni;

 best_peer_credits = peer_ni->peer_credits;
 }
 # No best_peer_ni means we've failed. That should only
 # happen if all peer_ni of this peer_net are unhealthy.
 # So the peer_net must now be marked unhealthy and the
 # selection restarted from the top
 if (!best_peer_ni) {
 mark_peer_net_unhealthy(best_peer_net);
 restart_from_top;
 }
 # Yay!
 success(best_ni, best_peer_ni, best_gw);

Receiving Messages

The way LNet processes received messages will remain largely the same except for the modifications

that will need to occur when accessing the internal structures, namely lnet_ni and lnet_peer, as

these have changed as described earlier in the document.

Receiving a message may trigger Discovery.

Backward Compatibility

The features of the existing code noted in the Primary NIDs section imply that a multi-rail capable node
should always use the same source NI when sending messages to a non-multi-rail capable node. The

40

likely symptoms of failing to do this include spurious resets of PtlRPC connections, but also more subtle
problems like failures to detect flock deadlocks.

Dynamic Peer Discovery

Dynamic Peer Discovery ("Discovery" for short) is the process by which a node can discover the network
interfaces it can reach a peer on without being pre-configured. This involves sending a ping to the peer.
The ping response carries a flag bit to indicate that the peer is multi-rail capable. If it is the node then
pushes its own network interface information to the peer. This protocol distributes the network interface
information to both nodes and subsequently the nodes can excercise the peer network interfaces as well
as its own, as described in further detail in this section. Discovery can be enabled, disabled or in
verification mode. If it is in verification mode, then it will cross reference the discovered peer NIDs with the
configured NIDs and complain if there is a discrepancy, but will continue to use the configured NIDs. cfg-
085, dyn-005, dyn-010, dyn-015, dyn-020, dyn-025, dyn-030, dyn-035, dyn-040, dyn-
045, dyn-050, dyn-055, dyn-060, dyn-065

Discovery handshake

Discovery happens between an active node which takes the lead in the process, and a passive node
which responds to messages from the active node. The following diagram illustrates the basic handshake
that happens between the active and passive nodes. If the full handshake completes, both nodes have
discovered each other.

In addition, the diagram illustrates the cases where either node adds or removes a local NI, and uses a
push to inform the other node.

41

Figure 5: Dynamic Discovery Overview

42

Discovery thread

To handle some of the work required for discovery, a new kernel thread will be created: the discovery
thread. The discovery thread is responsible for handling large parts of the active and passive side of
discovery. Using a separate thread alleviates some concerns regarding race conditions (but not all) as
well as concerns regarding stack depth.

The discovery thread handles:

1. Active side of discovery:
1. sending the ping message,
2. parsing the ping reply,
3. updating datastructures,
4. sending the push.

2. Passive side of discovery:
1. parsing the data from a push message,
2. updating datastructures

The discovery thread is started when LNet initializes, and runs even when discovery is disabled. If
discovery is enabled later, which can be done using DLC, this ensures that the peer state is correctly
prepared.

Discovery handshake code flow

The following diagram illustrates the code flow in the active and passive nodes during the discovery
handshake. It assumes that this is the first time the active and passive nodes communicate.

In the diagram, send is the thread sending a message, recv is the helper that handlers an incoming
message (managed by the LND), and discovery is the discovery thread.

The use of the following locks is illustrated:

 lnet_net_lock, a spinlock protecting peer state and lookups

 lnet_res_lock, a spinlock protecting memory descriptors and event queues

 lnet_peer_lock, new mutex protecting peer configuration

To add a peer to the lookup tables, both the lnet_net_lock and lnet_peer_lock must be held. The
lnet_peer_lock exists to ensure mutual exclusion when more complicated peer structures involving
multiple peer_ni structures need to be built.

43

Figure 6: Dynamic Discovery Detailed Sequence Diagram

44

Notes:

 The ping_handler, ping_reply_handler, push_handler, and push_ack_handler are

event queue callbacks, and called with the lnet_res_lock held. This is a spinlock, so any

memory allocations done in the handler must be GFP_ATOMIC. In general we don't want to do

anything long-running here.

 Note that the lnet_net_lock nests inside the lnet_res_lock.

 If we're re-using the memory in the MD (hard to see how to avoid this) then we have to copy out

the incoming ping and push data in ping_reply_handler and push_handler. This isn't

much of an issue for a ping, as we initiated it and can prepare for this. It is trickier for an incoming
push, which arrives with little prior warning, beyond the fact that we were just pinged.

 Waiting for the Push Ack ensure there is never more than one push in progress to a single peer
NI.

 In the sketch above the Active peer can send its message to the Passive peer before the Passive
peer has completed constructing the peer struct.

Discovery and DLC

Discovery interacts with peer configuration through DLC. Combine these and a peer can be created in
four different ways:

1. DLC configuration of a peer.
1. Discovery can be enabled
2. Discovery can be disabled

2. DLC/module parameter configuration of a router.

3. In lnet_send() when sending a message. (The active side of discovery.)

4. In lnet_parse() when parsing a message. (The passive side of discovery.)

Routers are an interesting case: discovery is not exactly required for them, because they must be defined
through the DLC/module parameter configuration. Without that configuration a node does not know which
remote networks can be reached through which routers.

Discovery race conditions and edge cases

Discovery is initiated by the active side in lnet_send(). When the passive side calls lnet_send() to

send a reply, this does not initiate a Discovery round. For an unknown peer, the passive side will need to

set up enough of the peer_ni, peer_net, and peer datastructures to ensure that a ping reply can be

sent. At the point where it does this in lnet_parse(), the passive side will not yet know whether the

active is multi-rail capable or not.

Use case scenarios to consider:

The following list covers various scenarios that were considered in the design of the Discovery Algorithm.
The main point is that Discovery is subject to many possible races, which we address by tracking the

state of each peer and peer_ni involved.

1. Note that the passive node sends a ping reply to the active node before the active node knows
whether it should do a ping push.

1. At this point the passive node does not know whether the active node is uprev or
downrev.

2. As noted above, the LNet reply always goes to the originating NID, so the passive node
has enough information to be able to send it.

45

2. The active node can be doing discovery on multiple NIDs of the passive node at the same time.
1. Active node:

1. The active node has to create peer/peer_net/peer_ni (at the very least

peer_ni) datastructures to be able to send a ping message

2. The active node now has muliple peer/peer_net/peer_ni structures for the

same peer.
3. On receipt of the ping reply the active node merges these structures.
4. Having merged these structures, the active node sends a ping push message.
5. The active node should be smart enough to not send multiple ping push

messages in this case.
6. The serialization we obtain by having a single dynamic discovery thread helps

here.
2. Passive node:

1. The passive node has to create peer/peer_net/peer_ni datastructures to be

able to send a ping reply.
2. At the point where the passive node does this, it doesn't know whether the active

node is uprev or downrev.
3. If downrev, the passive node will not receive further information from the active

node.
4. Therefore the datastructures set up must be complete for a downrev active node.
5. An uprev active node may have multiple pings in flight to different NIDs,

prompting creation of multiple peer structures.
6. On receipt of the ping push message, these structures must be merged.
7. Further pushes serve to update these structures.

3. Dynamic discovery and DLC configuration can update the same peer at the same time.
1. Serialize updates through a peer mutex, and protect lookups with per-CPT spinlocks.
2. A lookup needs just the per-CPT spinlock.

An update must hold both the mutex and all per-CPT spinlocks – LNET_LOCK_EX. It

needs this because a single per-CPT lock protects lookups of a peer NID, but also

traversal of the peer_ni list in the peer_net, and the peer_net_list in the peer. So

all per-CPT locks need to be held if the peer_ni_list or peer_net_list is to be

changed.
4. Can DLC modify discovered peers?

1. Presumably yes.
2. Troublesome case is deleting a peer NI that we're just using in discovery.
3. This is not different from the normal case of trying to delete a peer NI that is currently in

use.
4. The peer NI must be idled first, which implies that the discovery round on that peer NI

must be allowed to finish.
5. Discovery can push a NI list that does not include the NI going idle, even though it uses

that NI.
6. This is similar to the normal case where DLC removes an active NI.
7. While waiting for a NI to go idle, the peer mutex must be released, to avoid dynamic

discovery deadlocking with DLC.
8. We probably do not want yet another DLC request to come in and try to re-add the peer

NI before all the above has finished.

9. So the peer mutex mentioned above is not the ln_api_mutex that the ioctls serialize

on.
10. The api mutex must be held by the thread doing the ioctl across the entire operation, to

avoid this configuration race.
11. When both are held, the api must be locked before the peer mutex.

46

5. Can discovery modify DLC configured peers?
1. Presumably yes.
2. When DLC adds a peer NI, it can hold the peer mutex across the entire operation.
3. When DLC removed a peer NI, it ensured it was idle first.
4. Discovery always sees a coherent peer datastructure to work on.

6. The active node has discovery enabled, the passive node has discovery disabled.
1. The passive may not have a configuration for the peer. In a cluster with only a few multi-

rail nodes, it is plausible to just not explicitly configure the non-multi-rail peers.
2. There are three approaches:

1. the passive node just drops any push on the floor. In this case the dynamic
discovery thread need not be running.

2. the passive node verifies its configuration using the push message received. In
this case the dynamic discovery thread needs to be running.

1. a push containing more than one interface merits a complaint
2. a push containing a single interface is accepted without complaint

3. the passive node updates its configuration using the push.
7. The active node has discovery disabled, the passive node has discovery enabled.

1. The passive node is prompted to create the peer/peer_net/peer_ni datastructures

as usual
2. If the active node wasn't DLC configured on the passive node, then the passive node will

not detect that the active node is uprev. The relevant ping traffic never happens.
3. A multi-rail node on which discovery is disabled must be added to the DLC configuration

of all its relevant peers.
8. Active side enables dynamic discovery

1. While dynamic discovery is disabled all peers added via DLC are moved to the ACTIVE
state, and no dynamic discovery is performed

2. When dynamic discovery is enabled peers which are in the ACTIVE state are not
dynamically discovered.

1. The other option is to have it retroactive and go through all the peers and
determine if they have been dynamically discovered and if not then initiate
dynamic discovery.

1. This is likely to cause a spike in traffic
2. In large systems this could cause a heavy load on the nodes since there

could be potentially thousands of peers.
3. Further communication with peers in ACTIVE state does not trigger dynamic discovery
4. New peers added via DLC are moved to the WAITING-VERIFICATION state and on first

message to these peers dynamic discovery is triggered.
5. If dynamic discovery is disabled any messages sent on peers in the

WAITING_VERIFICATION state, will cause the peers to move directly to the ACTIVE
state with no discovery round triggered.

6. Messages sent to peers that do not exist yet in the system trigger dynamic discovery if
dynamic discovery is enabled.

47

9. Network Race: Ping push from peer is flipped. This can happen in both directions. In this case the
peer receiving the peer will not be alble to distinguish the order of the push and could end up with
outdated information.

1. To resolve this situation a sequence number can be added in the ping push, allowing the
recieving side to determine the order.

2. This will entail the receiving side to maintain the last sequence number of received push.
3. If the push received has a sequence number which is greater than what it currently has

for that peer, then update, otherwise ignore the push since it's has outdated information.
4.

1. Figure 7: Push/Push Race Condition

48

10. In the case when two peers simultaneously attempt to discover each other, each peer will create
the corresponding peer/peer_net/peer_ni structures as it would normally do, and will transition its
states according to the FSM. This scenario should be handled through the normal code path.

1.

1. Figure 8: Simultaneous Discovery Scenario

2. The following variations could occur
1. The node can receive a ping and create the corresponding peer structures before

it starts peer discovery.
1. In this case when the message is attempted to be sent to that peer, the

structures are found and the peer is going to be in ACTIVE state, and no
discovery round will be triggered.

2. The node can receive a ping after it has started its ping discovery round
1. In this case the peer structure will be found in the DISCOVERING state.

The ping response will be sent back (possibly before the peer state is
examined, but it's not important)

3. the node can receive a ping response before it sends its own ping response. This
is the standard case. The ping discovery protocol would be completed at this
point

4. The node can receive a ping push before it has sent it's own ping push. This
would result in it updating it's own structures. This is again handled in the normal
case.

49

11. In the case when one node attempts to discover the same peer on multiple NIDs.

Multiple peer/peer_net/peer_ni structures will be created for each one of the NIDs, since at

this point the node doesn't know that it's the same peer. On ping response the node will send a
ping push and transition the corresponding peer state to ACTIVE (note the order). When the
second ping response on NID2 is received the information in the ping response is used to locate
peer2a and the structures are merged. Since the other peer found is already in ACTIVE state,
then there is no need to send another ping push. On the passive side, a similar process occurs. If

the ping is sent from two different sources, then two peer/peer_net/peer_ni structures are

created, and then merged when the push is received, which serves to link both structures. If the
ping is sent from the same src NID, then the peer is created on the first ping and found on the
second ping. No merge is required.

1.

1. Figure 9: One-sided Discovery on multiple peer NIDs

12. It is possible to have simultaneous discovery on multiple NIDs. This is a combination of scenario
10 and 11. The handling of both scenarios apply here.

50

The Discovery algorithm

The discovery algorithm is best characterized through the state of the peer as seen from the node doing
discovery. To drive discovery we need answers to the following questions for each peer:

1. Have we received the peer's NI information? Two ways to get it:
1. This node pinged the peer.
2. The peer pushed this node.

2. Has the peer received the local node's NI information. Again two ways:
1. This node pushed to the peer.
2. The peer pinged this node.

3. Has local NI config changed from what the peer was told. Several ways this can happen:
1. DLC update
2. Interface hotplug

The state of a peer is a combination of the following bits of information:

 L: Local config sent to peer

 P: Peer config merged

 M: Multi-rail capable peer

 D: Data received from peer, not yet merged

 R: Reply to ping pending

 A: Ack pending

 Q: Queued for the discovery thread to work on

 C: Configured by DLC

 S: Size of MD buffers need to be increased

The following discussion will mention these by referring to the underlined letters: L, P, M, D, R, A, Q, C, S.
The discussion mostly treats these as 2-state flags, but the actual implementation may differ. For
example, the L state can be implemented by tracking the sequence number of the local NI config sent to
the peer, and comparing this to the current sequence number. The states have been defined in such a
way that initial state of a peer has all of them cleared.

Some of the peer states tie into the state of its attached peer_ni. The peer_ni states mentioned

below are:

 PC: This peer_ni was configured by DLC.

Where applicable, the description attempts to characterize both the behavior where DLC overrides
Discovery, and vice versa.

1. DLC
1. DLC adds a local NI

1. clear L on all peers
2. DLC deletes a local NI

1. clear L on all peers
3. DLC adds a peer NI to this peer

1. clear P

2. find or create a peer_ni

1. if the peer_ni doesn't exist yet, create it

2. if the peer_ni is attached to the peer and PC is clear, fine, DLC

confirms what discovery already found

51

3. if the peer_ni is attached to the peer and PC is set, we have a

duplicate DLC add

4. if the peer_ni is attached to a different peer and PC is clear

1. if P is set on that peer complain: DLC conflicts with discovery

2. if P is clear on that peer then there should not be a conflict

5. if the peer_ni is attached to a different peer and PC is set, we have

conflicting DLC

3. attach the peer_ni and set PC on it

4. if DLC overrides discovery, all peer_ni with PC clear must be detached

5. set C iff all peer_ni have PC set

4. DLC deletes a peer NI from this peer
1. clear P

2. detach the peer_ni

1. if PC is not set on the peer_ni then DLC is removing a

discovered peer_ni, which we might want to complain about

2. if PC is set on the peer_ni then DLC is removing a DLC-

configured peer_ni

3. if DLC overrides discovery and C is not set, then all peer_ni with PC not set

must be detached

4. set C iff all peer_ni have PC set, indicating the peer now matches the DLC

2. Forced rediscovery triggered by the upper layers (PtlRPC) if they somehow conclude that the
peer config might be incorrect.

1. if discovery is disabled
1. if C is set, complain about possibly-bad DLC
2. if C is not set, complain about possibly-bad previous discovery

2. if discovery is enabled (note that DLC overrides discovery)
1. if C is set, complain about possibly-bad DLC
2. if C is not set, proceed with "if discovery is enabled"

3. Sending a message

1. if the type is LNET_MSG_ACK or LNET_MSG_REPLY

1. continue sending

2. else if the portal is LNET_RESERVED_PORTAL

1. continue sending

3. else if L and P are set (peer is up-to-date)

1. continue sending
4. else if discovery is enabled

1. set Q
2. wait for discovery thread to signal us

5. else (discovery is disabled)
1. continue sending

4. Ping handling
1. Sending a Ping message

1. set R
2. Receiving a Ping reply (compare with receiving a push)

1. clear R
2. set M if the peer is multi-rail
3. clear M if the peer is not multi-rail

4. tag any peer_ni not mentioned in the data as do-not-use

5. clear the do-not-use tags from all peer_ni mentioned in the data and attached

to this peer

6. set D if a copy of the data can be stored
7. set S if the MD buffers were too small to receive the full data
8. set Q

3. Receiving a Ping message (being pinged by a remote node, EQ callback)

52

1. set L
2. send reply (automatic once the callback completes)

5. Push handling
1. Sending a Push message

1. set A
2. Receiving a Push ack (EQ callback)

1. clear A
2. set L
3. clear Q (dequeues, wakes waiters)

3. Receiving a push message (being pushed by a remote node, EQ callback)
1. clear P
2. set M if the peer is multi-rail
3. clear M if the peer is not multi-rail – this should never happen

4. tag any peer_ni not mentioned in the data as do-not-use

5. clear the do-not-use tags from all peer_ni mentioned in the data and attached

to this peer

6. set D if a copy of the data can be stored
7. set S if the MD buffers were too small to receive the full data
8. set Q (don't wait, we're in a callback)
9. send ack (automatic once the callback completes)

6. Merge received data (Q, D are set, done by discovery thread). This is a complex operation. There

can be multiple peer that have a peer_ni mentioned in the data.

1. if more than one peer has D set

1. retain only the newest set of data, as determined by the configuration sequence
number

2. clear D on every peer mentioned

2. if discovery is disabled or C is set on any peer

1. clear D

2. set P if the sent data matches the current peer

3. otherwise complain

3. if discovery is enabled and C is not set on all peers

1. set P

2. clear C if any changes are made to the peer

3. create a new detached peer_ni if necessary

4. detach any required peer_ni from an undiscovered peer (P not set)

5. attach the detached peer_ni

6. clear do-not-use state of these peer_ni

7. copy L, R, A, state from the undiscovered peer

8. a peer_ni attached to a discovered peer (P set) indicates a problem

1. we can detach this peer_ni and attach it to the peer being discovered

2. we can leave it attached to its current peer

3. we can force rediscovery for the discovered peer by clearing it's P state

4. complain about suspicious goings-on
7. The discovery thread does something like the following:

1. get queued peer (Q is set)

2. if A or R is set

1. continue to the next peer

3. else if S is set
1. resize the MD buffers
2. clear S

4. else if D if set
1. merge the received data

5. else if discovery is disabled
1. clear Q

53

2. wake any waiters on the peer

6. else if P is not set
1. send a ping message

2. the peer will be queued for work again once the ping reply comes in

7. else if M is not set (not multi-rail capable)
1. clear Q

2. wake any waiters on the peer

8. else if L is not set
1. send a push message

2. the peer will be queued for work again once the push ack comes in

9. else
1. clear Q
2. wake any waiters on the peer

A couple of notes:

 The lifecycle of peer_ni and peer_net structures is strongly intertwined with that of peer

structures.

 LNet currently creates a peer whenever it receives a message from an unknown sender, and

those peers stick around indefinitely. Which raises the question whether DLC can ever truly

delete a peer. For this design, the alternative would be that a peer_ni can be detached from a

multi-rail peer via DLC, but that the peer_ni sticks around with its own peer->peer_net-

>peer_ni chain afterwards. (Or in a design that allows for "bare" peer_ni structures, it could

stay in that form.)

 If discovery is enabled, and both Active and Passive are uprev, and the passive doesn't see a
push message before it sends a message to the active, it ends up pinging the active node. If the
active node sees that ping before it has sent the push message, the push message will not be
sent at all.

 A peer created to receive a message from a downrev node will be discovered when the uprev
node sends a message.

 A user-initiated ping also needs to queue a (6) Merge of the data received into the peer
structures.

 Adding or deleting a local NI forces pushes to be sent to the peers. We may be able to do this
lazily, but that only holds if at least one local NID is guaranteed to be stable. (This could be an
identity-containing loopback NID, or it could be that there is a "primary" NID for which the NI
cannot be removed.)

 Switching from discovery disabled to enabled triggers discovery of a peer the next time a
message is sent to it.

 If we somehow fail to receive or store the data of a (5.c) Received push message, then we still
clear P, which causes the node to ping the peer next time a message is sent.

 Whether a failure to send or receive a message during Discovery is recoverable depends on

whether more than one peer_ni is already attached to the peer being discovered. If there is

only one peer_ni then the entire peer is marked bad on failure. This generalizes to the case

where there are multiple peer_ni for a peer but all of them turn out to be unhealthy.

The data that needs to be stored when receiving a ping reply or push message consists of at least the list
of NIDs at 8 bytes per NID, so if we set LNET_MAX_INTERFACES at 16 that amounts to 128 bytes. If we
want to be able to handle 128 interfaces this grows to 1024 bytes. The only warning we have that a push
message might arrive is a previous ping, and this doesn't apply for later updates. Allocating such a buffer
to each peer structure seems wasteful. The alternative is to allocate the holding buffer in the EQ callback.
An EQ callback runs with the lnet_res_lock held, which is a spinlock. So GFP_ATOMIC must be used,
and hence the allocation can fail. At that point we still have some useful information in the MD buffers,
even if we cannot retain a copy, and can use this information to "tag" any peer_ni that are going away.
This prevents us from trying to use any of those peer_ni NIDs to discover more for this peer. New peer

54

NIDs cannot be reliably added though, and I prefer to defer that work. We also know that the our peer
config information is outdated.

The main reason for holding the lnet_res_lock seems to be that it prevents the EQ and MD from being
deallocated from under us while the EQ callback runs. This implies that it may be safe to drop and re-take
this lock in the callback, if we have ensured by other means that this cannot happen. I'd rather not have to
do this though.

Merging peer structures

Multiple peer structures (peer, peer_net, peer_ni) can be formed before discovery establishes

that they all belong to the same peer. At that point these structures need to be merged. This is a quick
sketch of what code combining the peer datastructures could look like – take it with a grain of salt, it is
known to be incomplete:

typedef struct {
 lnet_nid_t ns_nid;
 __u32 ns_status;
 __u32 ns_unused;
} WIRE_ATTR lnet_ni_status_t;
typedef struct {
 __u32 pi_magic;
 __u32 pi_features;
 lnet_pid_t pi_pid;
 __u32 pi_nnis;
 lnet_ni_status_t pi_ni[0];
} WIRE_ATTR lnet_ping_info_t;
/*
 * Process push data.
 */
int
lnet_process_peer_push_data(ln_ping_info_t *push_data)
{
 /*

 * if data for more than LNET_MAX_INTERFACES was sent, it will
 * have been truncated.
 */
 if (push_data->pi_nnis > LNET_MAX_INTERFACES /* value */) {
 complain();
 push_data->pi_nnis = LNET_MAX_INTERFACES;
 }
 /* Here we hold the mutex across the entire operation */
 lnet_mutex_lock();
 /* Check whether there is a peer struct already. */
 peer = NULL;
 lnet_net_lock(LNET_LOCK_EX);
 /*
 * lock not needed for lookup, except modifying the reference
 * counts, unless those are made atomic.
 */
 for (i = 0; i < push_data->pi_nnis; i++) {
 nid = push_data->pi_ni[i].ns_nid;
 peer_ni = lnet_peer_ni_lookup_locked(nid);

 if (peer_ni) {
 peer = peer_ni->pni_net->pn_peer;
 lnet_peer_addref(peer); /* ? */
 lnet_peer_ni_decref(peer_ni);
 break;
 }
 }
 lnet_net_unlock(LNET_LOCK_EX);
 if (!peer) {
 peer = lnet_peer_alloc();
 if (!peer) {
 rc = -ENOMEM;
 failure;

55

 }

 }
 /*
 * We have a peer struct. Walk the nid list again to create
 * the networks.
 */
 for (i = 0; i < push_data->pi_nnis; i++) {
 nid = push_data->pi_ni[i].ns_nid;
 netid = LNET_NIDNET(nid);
 peer_net = NULL;
 list_for_each(&peer->lp_nets, e) {
 pn = list_entry(e, pn_list);
 if (pn->pn_netid == netid) {
 peer_net = pn;
 break;
 }
 }
 if (peer_net)
 continue;
 /* Add new network. */

 peer_net = lnet_peer_net_alloc();
 if (!peer_net) {
 rc = -ENOMEM;
 failed;
 }
 lnet_net_lock(LNET_LOCK_EX);
 list_add_tail(&peer->lp_nets, &peer_net->pn_list);
 lnet_peer_addref_locked(peer);
 lnet_net_unlock(LNET_LOCK_EX);
 }
 /*
 * Now the peer has the networks. Check each ni.
 */
 pni = NULL;
 for (i = 0; i < push_data->pi_nnis; i++) {
 nid = push_data->pi_ni[i].ns_nid;
 netid = LNET_NIDNET(nid);
 cpt = peer_nid_to_cpt(nid);
 /* Pre-emptive allocation. */
 if (!pni) {

 if (!list_empty(ptable->pt_parked_peer_ni)) {
 pni = list_entry(ptable->pt_parked_peer_ni);
 list_del(&pni->pni_hashlist);
 memset(pni, 0, sizeof(*pni));
 } else {
 pni = lnet_peer_ni_alloc();
 if (!pni) {
 rc = -ENOMEM;
 failure;
 }
 }
 }
 /* Find the net. */
 peer_net = NULL;
 list_for_each(&peer->lp_nets, e) {
 pn = list_entry(e, pn_list);
 if (pn->pn_netid == netid) {
 peer_net = pn;
 break;

 }
 }
 LASSERT(peer_net);
 lnet_net_lock(LNET_LOCK_EX);
 peer_ni = lnet_peer_ni_lookup_locked(nid);
 if (peer_ni && peer_ni->pni_net != peer_net) {
 /* Attached to different peer struct. */
 pn = peer_ni->pni_net;
 list_move_tail(&peer_ni->pni_list, &peer_nets->pn_nets);
 peer_ni->pni_net = peer_net;
 lnet_peer_net_decref_locked(pn);
 lnet_peer_net_addref_locked(peer_net);
 if (list_empty(pn->pn_nis)) {

56

 p = pn->pn_peer;

 list_del(pn->pn_list);
 lnet_peer_decref_locked(p);
 list_move(&pn->pn_list, &ptable->pt_parked_peer_net);
 if (list_empty(p->lp_nets)) {
 // get rid of peer...
 list_move(&p->lp_list, &ptable->pt_parked_peer);
 }
 }
 } else if (!peer_ni) {
 /* No peer_ni, insert our new one. */
 peer_ni = pni;
 pni = NULL;
 /* Attach to peer_net */
 list_add_tail(&peer_ni->pni_list, peer_net->pn_nis);
 peer_ni->pni_peer_net = peer_net;
 lnet_peer_net_addref(peer_net);
 }
 lnet_net_unlock(LNET_LOCK_EX);
 }

 lnet_mutex_unlock();
 return rc;
}

57

Finite State Machines

Local NI FSM

Figure 10: Local NI FSM

 INIT: pre state. Only transitory.

 CREATED: The NI has been added successfully

 FAILED: LND notification that the physical interface is down. hlt-005, hlt-010,

 DEGRADED: LND notification that the physical interface is degraded. IB and ETH will probably
not send such a notification. hlt-015, hlt-020, hlt-025

 DELETING: a config delete is received. All pending messages must be depleted.

Both Degraded and Failed both need the LND to notify LNet. For degraded the LND could possibly query
the type of the card and figure out the theoretical speed, then if the measured speed is below, then we
can mark as degraded. snd-080

snd-085 - TODO: need to identify in the design how we deal with local NI failures.

58

Local Net FSM

Figure 11: Local Net FSM

 INIT: pre state. Only transitory.

 ACTIVE: First NI has been added successfully

 IN-ACTIVE: All NIs are down via LND notifications.

 DELETING - Config request to delete local net

This FSM is driven from the Local NI FSM, since the Local Nets are implicitly created, by configuring the
local NI.

59

Peer FSM

Figure 12: Peer FSM

This is a simplified FSM for a peer that illustrate how the various states relate to each other. The letters

refer to the The Discovery Algorithm.

States

 S1: INIT initial state.

 S2: ACTIVE normal state for sending or receiving messages, discovery is either not needed or
disabled.
Q, D, A R clear. P, L are set if discovery is enabled, otherwise they may be clear.

 S3: DISCOVER being worked on by the discovery thread.
P and/or L clear. D, A, R clear. Q set.

 S4: PING SENT a ping message has been sent to a peer, waiting for the reply
Q, R set. P, A, D clear.

60

 S5: DATA RECEIVED ping or push data has been received
Q, D set. P, R, A clear

 S6: PUSH SENT a push messages has been sent to a peer, waiting for the ack
Q, A set. L clear.

 S7: INACTIVE all peer NI are marked bad, waiting to recover

Transitions

 T1: DLC add creating a peer through DLC

 T2: Send / Recv creating a peer from lnet_send() or lnet_parse()

 T3: DLC add / DLC delete modifying an existing peer by adding or deleting peer_ni using

DLC, but also an existing peer going to discovery because earlier modifications were done with

discovery disabled, and now discovery has been enabled

 T4: Send / Recv normal message traffic

 T5: Recv Push a Push message is received

 T6: Send Ping a Ping message is sent

 T7: Reply a Ping reply is received

 T8: Merge merge of data received from a Ping reply or Push message

 T9: Send Push a Push message is sent

 T10: Ack a Push ack is received

 T11: Discovered discovery is complete

 T12: All paths failed all paths to the peer are marked bad

 T13: Path recovered at least one path the peer is marked good again

An FSM reflecting the discovery algorithm in all its details would be too unwieldy to be of much use.
Above is an attempt at a simplified FSM. TODO: explain how the diagram maps to the algorithm
described above.

61

Peer NI FSM

Figure 13: Peer NI FSM

When a peer_ni is initially added to the peer, it will not be in CREATED state, which means there is no
active connection with that peer_ni.

When that peer_ni is selected for first usage it will go into ACTIVATING state. If the message is sent
successfuly, then it'll move to CONNECTED state, otherwise it will move to FAILED state.

Subsequent messages will be happen in the CONNECTED state. If any message fails from then on, it
moves to the FAILED state.

62

When a connection failed the peer_ni is put on a list which is checked periodically by another thread
which reinitiates the connection.

 INIT - pre state. Only transitory

 CREATED - peer_ni created but no active connections exists.

 ACTIVATING - 1st message sent to the peer_ni, but has not completed yet

 CONNECTED - 1st message sent successfully

 FAILED - A message (1st or after) has failed to send

 DELETING - A dynamic update or a config delete removes that peer_ni

