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Understanding Lustre Filesystem Internals

Abstract

Lustre was initiated and funded, almost a decade ago, by the U.S. Department
of Energy Office of Science and National Nuclear Security Administration labo-
ratories to address the need for an open source, highly scalable, high-performance
parallel filesystem on then-present and future supercomputing platforms. Through-
out the last decade, it was deployed over numerous medium- to large-scale super-
computing platforms and clusters, and it performed and met the expectations of
the Lustre user community. At the time of this writing, according to the Top500
list, 15 of the top 30 supercomputers in the world use Lustre filesystem.

This report aims to present a streamlined overview of how Lustre works inter-
nally at reasonable detail including relevant data structures, APIs, protocols, and
algorithms involved for the Lustre version 1.6 source code base. More important,
the report attempts to explain how various components interconnect and function
as a system. Portions of the report are based on discussions with Oak Ridge Na-
tional Laboratory Lustre Center of Excellence team members, and portions of it are
based on the authors’ understanding of how the code works. We, the authors, bear
all responsibility for errors and omissions in this document. We can only hope the
report helps current and future Lustre users and Lustre code developers as much as
it helped us understanding the Lustre source code and its internal workings.
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1 COMPONENT VIEW ON ARCHITECTURE 6

1 Component View on Architecture

Lustre is a GNU General Public licensed, open-source distributed parallel filesystem
developed and maintained by Sun Microsystems Inc. Due to the extremly scalable
architecture of the Lustre filesystem, Lustre deployments are popular in scientific su-
percomputing, as well as in the oil and gas, manufacturing, rich media, and finance
sectors. Lustre presents a POSIX interface to its clients with parallel access capabili-
ties to the shared file objects. As of this writing, 15 of the top 30 fastest supercomputers
in the world use Lustre filesystem for high-performance scratch space.

Lustre is an object-based filesystem. It is composed of three components: Metadata
servers (MDSs), object storage servers (OSSs), and clients. Figure 1 illustrates the
Lustre architecture. Lustre uses block devices for file data and metadata storages and
each block device can be managed by only one Lustre service. The total data capacity
of the Lustre filesystem is the sum of all individual OST capacities. Lustre clients
access and concurrently use data through the standard POSIX I/O system calls.

High-speed  Interconnect

Metadata
Server (MDS)

Metadata
Target (MDT)

Lustre Clients

Object Storage
Targets (OST)

Object Storage
Servers (OSS)

Figure 1: Lustre components.

• MDS (metadata servers) provides metadata services. Correspondingly, an MDC
(metadata client) is a client of those services. One MDS per filesystem manages
one metadata target (MDT). Each MDT stores file metadata, such as file names,
directory structures, and access permissions.
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1 COMPONENT VIEW ON ARCHITECTURE 7

• MGS (management server) serves configuration information of the Lustre filesys-
tem.

• OSS (object storage server) exposes block devices and serves data. Correspond-
ingly, OSC (object storage client) is client of the services. Each OSS manages
one or more object storage targets (OSTs), and OSTs store file data objects.

The collection of MDS/MGS and OSS/OST are sometimes referred to as Lustre
server fronts, fsfilt and ldiskfs as Luster server backends. In the following discussion,
we start from the Lustre client side, and follow the general data and control thread
all the way to the OST and MDS. The discussion touches on many components while
skipping details to make the structural relationship more obvious.

Lustre Client

Lustre, being a POSIX-compliant filesystem, presents a unified filesystem interface
such as open(), read(), write(), etc. to the user. In Linux, this unified interface is
achieved through Virtual File System (VFS) layer (in BSD/Solaris, this would be
known as vnode layer). There is a shim layer in Lustre called llite that is hooked
with VFS to present that interface. The file operation requests that reach llite will then
go through the whole Lustre software stack to access the Lustre filesystem, as shown
in Figure 2.

VFS

Client

Llite

LOV MDC

data metadata

OSC-1 OSC-N

PTR-RPC

LNET

PTR-RPC

LNET

OBDfilter

OST

ldiskfs

Fsfilt wrapper

OSS

Ldlm

Data req Lock req

PTR-RPC

LNET

Journal

MDS

VFS

Fsfilt wrapper

MDS

Ldlm

Dispatch
req

Dispatch
req

MD req MD lock req

Figure 2: A component view of Lustre architecture.
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1 COMPONENT VIEW ON ARCHITECTURE 8

In Lustre, general file operations such as create, open, read, etc. require metadata
information stored on MDS. This service is accessed through a client interface module,
known as MDC.

From the MDS point of view, each file is composed of multiple data objects striped
on one or more OSTs. A file object’s layout information is defined in the extended
attribute (EA) of the inode. Essentially, EA describes the mapping between file object
id and its corresponding OSTs. This information is also known as striping EA.

For example, if file A has a stripe count of three , then its EA might look like:

EA ---> <obj id x, ost p>
<obj id y, ost q>
<obj id z, ost r>
stripe size and stripe width

So if the stripe size is 1MB, then this would means that [0,1M), [4M,5M) ... are
stored as object x, which is on OST p; [1M, 2M), [5M, 6M) ... are stored as object y,
which is on OST q; [2M,3M), [6M, 7M) ... are stored as object z, which is on OST r.

Before reading the file, client will query the MDS via MDC and be informed that
it should talk to <ost p, ost q, ost r> for this operation. This information is
structured in so-called LSM, and client side LOV (logical object volume) is to in-
terpret this information so client can send requests to OSTs. Here again, the client
communicates with OST through a client module interface known as OSC. Depending
on the context, OSC can also be used to refer to an OSS client by itself.

All client/server communications in Lustre are coded as an RPC request and re-
sponse. Within the Lustre source, this middle layer is known as Portal RPC, or ptl-rpc:
It translates and interprets filesystem requests to and from the equivalent form of RPC
request and response, and the LNET module to finally put that down onto the wire.

OSS

At the bottom of the OSS stack, are the familiar LNET and Portal-RPC layers. As with
the client side stack, Portal RPC will interpret the request. The important thing to bear
in mind is that the requests handled by OSS are data requests 1, not metadata requests.
Metadata requests should be passed on and handled by MDS stack, as shown at the
rightmost column in Figure 2.

Going up on the stack, OST acts like a dispatcher: it invokes different functions
based on the type of request. Broadly speaking, there are two types of request: lock
related and data related. The former will be passed onto ldlm (Lustre distributed lock
manager) to handle and the latter will go to obdfilter. The obdfilter is a module that
interconnects the Lustre stack and the regular OS stack, so to speak. It defines a generic
API that translates a Lustre-specific request to the backend filesystem-specific request,
with the help another wrapper API component called fsfilt. Conceptually, fsfilt is like
a VFS layer, if you register proper file operations with it, it will use the particular
filesystem as the backend; in the case of Lustre, this backend filesystem is currently
ldiskfs. In the future, ZFS will be supported as backend filesystem as well, and fsfilt
could probably be redesigned or replaced by a better filesystem-agnostic middle layer.

1As well as some size requests, such as glimpse requests from a client

UNDERSTANDING LUSTRE INTERNALS



2 LUSTRE LITE 9

MDS

The MDS software stack is similar to the OSS stack but, there are some differences
between them. The main difference is that the MDS software stack does not have an
obdfilter as can be seen in Figure 2. The dispatcher is called MDS. Of course, it does
more than just dispatch, and it will be explained in detail in Section 6. For a metadata
change request, MDS will do journaling a bit differently: it will start a transaction
before directly invoking the VFS API. The particular component block may be called
dcache as it mostly concerns operating on a dentry cache, but in a larger framework,
it is really part of the VFS.

2 Lustre Lite

In this section, we describe how Lustre Lite connects and fits into Linux VFS, which
is necessary for supporting VFS semantics and the POSIX interface. To summarize,
Lustre Lite provides the following functions through a method table:

• Lustre specific file operations, through ll_file_operations.

• Lustre specific dentry operations, through ll_d_ops and its cache.

• Lustre specific directory operations, through ll_dir_operations.

• Lustre specific inode operations, through ll_dir_inode_operations and ll_
file_inode_operations.

• Lustre specific file mapping operations, through ll_file_vm_ops.

• And many others, such as Lustre super block operations, address spaces, etc.

2.1 VFS Connection

Figure 3 presents an overall picture of how various data structures are connected. Some
highlights are explained below.

A process maintains a list of associated open files. Each open file has an in-memory
representation known as the file object. It stores the information necessary to interact
between an open file and process. To the userland, this is presented by a file handle,
fd. This data structure contains a field, f_op, that acts like a switchboard or pointer to
a method table that provides functions specific to each filesystem. So a file read using
system call sys_read() becomes:

file->f_op->read(...);

UNDERSTANDING LUSTRE INTERNALS
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fs    files

process
descriptor

struct dentry * root

struct fs_struct

struct dentry * pwd

struct vfsmount * 
rootmnt
struct vfsmount * 
pwdmnt

int max_fds

struct file_struct

int max_fdset
struct file **fd

struct file * [ ] 
fd_array

struct file_operations *f_op

struct file

struct dentry *f_dentry

struct inode * 
d_inode

struct dentry *
d_dentry

dentry cache

struct dentryi_ino

struct inode

struct super_block *i_sb

struct inode_operations *i_op

struct file_operations *i_fop

s_inodes

struct super_block

s_files
s_list

void * s_fs_info

VFS Layer

struct ll_inode_info

struct inode  lli_vfs_node

struct lustre_sb_info

struct obd_device *lsi_mgc
struct lustre_mount_data *lsi_lmd
struct lustre_disk_data *lsi_ldd
struct ll_sb_info *lsi_llsbi
struct vfsmount *lsi_srv_mnt
atomic_t lsi_mounts

struct ll_sb_info

struct file_operations *ll_fop

struct file_operations 
      ll_file_operations = { ... }

struct file_operations 
      ll_dir_operations = { ... }

cond. assign
contain

struct inode_operations 
      ll_file_inode_operations = { ... }

cond. assign

struct inode_operations 
      ll_dir_inode_operations = { ... }

Lustre Lite Layer

struct super_operations 
      luster_super_operations = { ... }

s_op

Figure 3: Hooking up Lustre with Linux VFS.

2.1.1 Dentry Object

Another important field defined in the file structure is f_dentry, which points to a
dentry object (struct dentry) stored in a dentry cache, also known as the dcache.
Essentially, VFS will create a dentry object the first time a file or directory is about
to be accessed. If this is a non-existent file/directory, then a negative dentry will be

UNDERSTANDING LUSTRE INTERNALS



2 LUSTRE LITE 11

created. As an example, take the following pathname: /home/bob/research08; it
is composed of four path components: /, home, bob, and research08. Correspond-
ingly, the path lookup will create four dentry objects for each component. Each dentry
object associates the respective component with its inode through field d_inode.

The inode object stores information about a specific file, uniquely identified by an
inode number. ULK32 has exhaustive listings of field definitions for inode structure.
What is important to know is that (1) i_sb points to the VFS superblock; (2) i_op is
the switchboard for inode operations such as:

create(dir, dentry, mode, nameidata)
mkdir(dir, dentry, mode)
lookup(dir,dentry,nameidata)
...

The first method creates a new disk inode for a regular file, associated with a den-
try object in some directory. The second method creates a new inode for a directory
associated with some dentry object in some directory. And the third one searches a
directory for an inode corresponding to a filename included in a dentry object.

2.1.2 Lustre Superblock

VFS layer defines a generic superblock object (struct super_block), which stores
information about the mounted filesystem. One particular field s_fs_info points to
superblock information that belongs to a specific filesystem. In the case of Lustre,
this filesystem specific data is represented by the structure lustre_sb_info, which
stores information needed for mounting and unmounting Lustre filesystem. It further
connects to another structure ll_sb_info, which contains more Lustre Lite3 specific
information about filesystem state only for clients.

Lustre specific superblock operation is defined in struct variable lustre_super_
operations. 4 The initialization of correct superblock operations takes place when
we initially establish the in-memory superblock data structure in function client_

common_fill_super():

sb->s_op = &lustre_super_operations;

It is worth mentioning that when creating Lustre files, the alloc_inode() su-
perblock method is implemented by ll_alloc_inode() function. It will create a
Lustre specific inode object ll_inode_info and return the VFS inode embedded in
it. Pay attention to the particular way in which the generic VFS inode and Lustre in-
ode interconnect with each other: this method creates and fills the VFS inode structure
along with extra state information the Lustre filesystem needs, but it only returns the
VFS inode structure &lli->lli_vfs_inode embedded in lli. 5

2Understanding the Linux Kernel, the third edition.
3We use Lustre Lite and llite interchangeably.
4See more details in lustre/llite/super25.c, which is actually for kernel 2.6
5The fact that we allocate one big structure that holds both VFS inode and Lustre private state information

is an implementation detail, and it is not necessary to be this way. It used to be that private state info was
allocated separately and a pointer from VFS inode was used to access it.

UNDERSTANDING LUSTRE INTERNALS
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static struct inode **ll_alloc_inode(struct super_block *sb)
{

struct ll_inode_info *lli;
...
return &lli->lli_vfs_inode;

}

To retrieve the parent structure from a child structure, Lustre defines a helper
method ll_i2info(), which essentially invokes kernel macro container_of by:

/* parameters of macro: ptr, type, memeber */
return container_of(inode, struct ll_inode_info, lli_vfs_inode);

2.1.3 Lustre inode

The initialization of correct inode and file/dir functions takes place when inode is being
filled in during ll_read_inode2(). There are four struct variables defined for it,
and two of these are for inode operations: ll_file_inode_operations and ll_

dir_inode_operations. Two of these are for file/directory operations, ll_file_
operations, and ll_dir_operations. In each case, file and directory each has its
own set, and which to assign depends on the inode or the file itself. 6 The following
snippet shows an example of a definition for file operations:

/* in dir.c */
struct file_operations ll_dir_operations = {

.open = ll_file_open,

.release = ll_file_release,

.read = generic_read_dir,

.readdir = ll_readdir,

.ioctl = ll_dir_ioctl, ...
};
/* in file.c */
struct file_operations ll_file_operations = {

.read = ll_file_read,

.write = ll_file_write,

.open = ll_file_open, ...

For example, if the inode to be created is a file, then i_fop will be assigned as
ll_file_operations; if the inode to be created is a directory, then i_fop will be
assigned as ll_dir_operations:

if (S_ISREG(inode->i_mode)) {
inode->i_op = &ll_file_inode_operations;
inode->i_fop = sbi->ll_fop;
...

} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ll_dir_inode_operations;
inode->i_fop = &ll_dir_operations;
...

A general observation on the pattern: the pointer for the method table is initialized
and established properly by the party or the function that is creating the new instance
of it.

6These variables are scattered in various places such as file.c, dir.c, namei.c.
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2.2 Path Lookup

Path lookup is a relatively complex task and one of the most important and frequently
performed. Linux VFS does most of the heavy lifting; we want to emphasize the
junction at which Lustre does specific things. In this section, we outline basic steps
with enough details to follow the main thread of the code but skip many branches one
has to take care of in real code, such as:

• the path name contains component of . and ..,

• the path name contains symbolic links, which may induce circular reference,

• the access rights and permission check,

• the path name contains mount point of another filesystem,

• the path name contains not-yet-existing file,

• LOOKUP_PARENT flag set,

• the path name does not have a trailing slash.

Lookup can be invoked from sys_open() call, the usual call path from there is
to do filp_open() and open_namei(). It is this last function that initiates path_
lookup() call. In particular, if a file is opened with O_CREAT flag in the parameter for
access mode, the lookup operation will be set with LOOKUP_PARENT, LOOKUP_OPEN,
and LOOKUP_CREATE. The end result of path lookup is either:

• return dentry object of last path component if it exists; or

• return dentry object of next-to-last path component if it does not, as in the case
of creating a new file. From there, you can allocate a new disk inode by invoking
the create method of the parent inode.

Now we focus on the lookup specifics. If the path starts with /, then it is an ab-
solute path: search starts with the process root directory in current->fs->root.
Otherwise, a search starts with current->fs->pwd. We also know the dentry object
as well as its inode of beginning directory at this point (refer back to figure 3 to see
why). The nameidata keeps track of the last resolved path component with dentry

and mnt fields. Initially, they are assigned with starting directory. The core lookup
operation is performed by link_path_walk(name, nd), where name is the path
name, nd is the address of the nameidata structure.

1. Consider next component to be resolved; from its name, compute 32-bit hash
value to be used when looking in the dentry cache hash table.

2. Set LOOKUP_CONTINUE flags in nd->flags to denote that there are more com-
ponents to be analyzed.
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3. Invoke do_lookup() to search dentry object for the path component. If found
(skip revalidation), then this path component has been resolved, and move on. If
not found, then invoke real_lookup(). At the end of the cycle, the dentry

and mnt field of local dentry variable next will point to, respectively, the dentry
object and the mounted filesystem object of the path component we attempt to
resolve.

4. If the above do_lookup() reaches the last component of the pathname, and
assuming that it is not a symbolic link as assumed at the beginning, then this is
our destination. All we need to do is to store the dentry object and mnt info in
the passed nameidata nd and return without error:

nd->dentry = next->dentry;
nd->mnt = next->mnt;

Lustre specific operation is handled in the real_lookup() call. A dentry is cre-
ated by VFS and is passed into the filesystem specific lookup function. Lustre’s lookup
responsibility is to locate or create a corresponding inode and fill it with correct infor-
mation. If inode could not be found, then the dentry still remains, only it has a NULL

inode pointer. Such dentries are called negative meaning there is no such file with this
name. The particular code segment for this switching is given below.

struct dentry *result;
struct inode *dir = parent->d_inode;
...
result = d_lookup(parent, name);
if (!result) {

struct dentry *dentry = d_alloc(parent, name, nd);
if (dentry) {

result = dir->i_op->lookup(dir,dentry,nd);
...

}

Now the lookup is passed on Lustre’s side, and follow-on operations might involve
contacting MDS for more information.

There is also a cached_lookup path that calls in a ->revalidate method pro-
vided by the Lustre. This method verifies that the cached dentry/inode is still valid and
does not need to be updated from the server.

2.3 I/O Path

This section starts with discussions on three I/O paths traveled by Lustre: Async I/O,
Group I/O, and Direct I/O. Then we discuss how Lustre interfaces with VFS by surren-
dering control of I/O (in most cases) to VFS, which does more preparations and then
reads/writes data on a page-by-page basis through address space methods, which are in
turn provided by Lustre. So think of this as a process of: VFS to llite through hooks,
llite then calls into VFS for processing help, and VFS then hands control back to llite
– an in and out intertwined process.
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2.3.1 Asynchronous I/O

This is probably the most traveled I/O path in Lustre, and we will provide a top-down
description on the write process. Read operation is very similar. The registered file
write operations for VFS are discussed in Sec. 2.1.

1. The writev() is for older kernels, newer ones will use aio_write(). Our
entry point of analysis is ll_file_write(). This function defines a iovec

with base pointing to the buffer provided at the user space, and length is the
number of bytes to write.

struct iovec local_iov = { .iov_base = (void __user *) buf,
.iov_len = count };

Another structure initialized here is kiocb, which records the status of the I/O.
Passing in as parameters both iovec and kiocb, it invokes either ll_file_
writev() or ll_file_aio_write() depending on the kernel version. In our
case, we follow the latter. Codewise, both functions are implemented as one,
only with slightly different prototype declarations:

#ifdef HAVE_FILE_WRITEV
static sszie_t ll_file_writev(

struct file *file,
const struct iovect *iov,
unsigned long nr_segs,
loff_t *ppos) {

#else /*AIO stuff */
static ssize_t ll_file_aio_write(

struct kiocb *iocb,
const struct iovec *iov,
unsigned long nr_segs,
loff_t pos)

{
struct file *file = iocb->ki_filp;
loff_t *ppos = &iocb->ki_pos;

#endif

2. The key to understanding this function (ll_file_aio_write()) is that Lustre
breaks the write into multiple chunks based on the stripe size, then asks for a
lock on each chunk in a loop. 7 This is to avoid complications when you have to
ask a lock on a large extents. Although we said earlier that LOV is the layer that
handles stripe info, Lustre Lite is very much aware of that as shown in this case
– you can see how closely coupled they are. The stripe info is obtained by:

struct lov_stripe_md *lsm = ll_l2inof(inode)->lli_smd;

Lustre controls the size of each write by setting up a copy of the original iov
control structure, iov_copy, then goes back and asks one of common routines
in the kernel to drive the write:

retval = generic_file_aio_write(iocb, iov_copy, nrsegs_copy, *pppos);

7The lock granularity is page unit, which is useful when you do small I/O. Normally, you would request
a lock on stripe size. One exception is if it is O_APPEND write, then the lock is for the entire file.
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We tally the number of bytes to write in *iov and use count to track the number
of bytes remaining to be written. This is repeated until an error is hit or all bytes
are written.

Before we make a generic write routine, in addition to getting a lock by calling
ll_file_get_tree_lock_lov(), there are a few corner cases this function
needs to deal with:

• If user-application opens the file with O_LOV_DELAY_CREATE, but starts to
write without first calling ioctl to set it up, then we need to fail this call.

• If user-application opens the file with O_APPEND, then we need to get a
lock on the entire content: lock_end is set with OBD_OBJECT_EOF, or -1
to represent the end of the file.

3. generic_file_aio_write() is just a wrapper for __generic_file_aio_
write_nolock(); both functions have been described in ULK3, and we will
not dwell on it here. Since direct I/O is not covered in this section, the write
flow goes into generic_file_buffered_write(). This is where the write is
further broken into pages, and page cache is allocated. The main body of work
is performed in the loop given below.

do {
...
status = a_ops->prepare_write(file, page, offset, offset+bytes);
...
copied = filemap_copy_from_user(page, offset, buf, bytes);
...
status = a_ops->commit_write(file, page, offset, offset+bytes);
...

} while (count);

First, we prepare the page write through the Lustre registered method. The prepa-
ration involves checking if the starting position is aligned at the beginning and if
it needs to be read from disk first (of course, there is no local disk operation here
in Lustre, but VFS sees it that way). Then it copies a page worth of data from
user space to the kernel. Finally, we once again ask Lustre specific method to
write the page out. So the control is passed in and out of Lustre code twice.

There are a few interesting points to make on page and boundary management.
Let’s say the logical file position for write is 8193 and the page size is 4KB. As
this is a page-based write (both prepare write and commit write are page-based),
it first calculates page index (2) and page offset (1), and bytes are the maximum
bytes you can write in that page. However, if the remaining count is less than
that, we need to adjust it by the exact number of bytes we will write for this page.

index = pos >> PAGE_CACHE_SHIFT;
offset = (pos & (PAGE_CACHE_SIZE -1));
bytes = PAGE_CACHE_SIZE - offset;
bytes = min(bytes, count);

This calculated logical page index will be used to locate or allocate a page in the
page cache and be associated with this file mapping:
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struct address_space *mapping = file->f_mapping;
page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);

A small digression: The __grab_cache_page() is a helper function that is
only used for generic file write requests. The basic flow of this function is to first
check if such a page already exists in the pagecache and return it if so. Other-
wise, it allocates a new page by invoking page_cache_alloc() and adds it to
page cache (add_to_page_cache()). However, another thread might allocate
a page at this offset just between the last check and now, so adding to pagecache
can fail. In that case, we need to check and retrieve the page from pagecache
again:

repeat:
page = find_lock_page(mapping, index);
if (!page) {

... page_cache_alloc(mapping);
err = add_to_page_cache(*cached page, mapping, index, GFP_KERNEL);
if (err == -EEXIST)

goto repeat;

A small optimization is made here at the cost of polluting the code: if a just-
allocated page cannot be added to the page cache as shown, instead of returning
it, it keeps it in cached_page, so next time when a new page is requested, we
don’t have to call the allocation function again.

4. Now we can move to prepare write. It is declared as given below.

int ll_prepare_write(struct file *file, struct page *page,
unsigned from, unsigned to)

The ll_prepare_write()is invoked with from set as the offset and to set
as the offset + bytes. This is exactly the boundary issue we discussed above.
Overall, this method is to ensure that the page is up to date, and if this is not a
full page write, then read in the partial page first.

A few structs are used in this function; their meanings are as follows:

struct obdo is for on the wire representation of a Lustre object and its related
information.

strut brw_page is for describing the state of the page for sending.

struct obd_info is for passing parameters between Lustre layers.

Also in this method, we need to check the end of file (EOF) for cases like partial
page write: if EOF falls within the page (write beyond EOF), then we need to
fill in non-overwriting portions with zeros; otherwise, we need to preread it.

5. Next, the LOV initiates preparing page by lov_prep_async_page().

There are three structs defined at each layer a page write needs to go through.
At the Lustre Lite layer, there is the ll_async_page (LLAP). The LOV defines
the lov_async_page (LAP) and the osc_async_page (OAP).
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6. If the write operation is async, it will be handled by osc_queue_async_io(),
and internally it calls function osc_enter_cache(), which does page account-
ing to ensure we do not have more dirty pages than allowed, and blocks on at-
tempts to add extra dirty pages. It also enforces grants in similar manner.

Therefore, in (at least) two conditions an OAP will not be able to go into the
cache:

• If the size of the cache is less than 32MB, then it is O.K. to put OAP into
cache, return 0; otherwise, return an error code.

• If the grant is not sufficient on the client side, then again return an er-
ror code. Upon each OSC client’s initialization, one can assume that the
OST server side granted the client some space. A grant is just a number
promised by the server that this client can flush out this much data and
knowing the server can deal with it. The initial grant is 2MB, which is two
RPC’s worth of data. Then, write request is issued by the client, and it
can ask for more grant if needed. At the same time, along with each data
transfer or write, client needs to keep track of this grant and not to overrun
it.

If the page is unable to get into the buffers, a group I/O or synchronous I/O will
be tried later.

7. After the OAP caching check is done, loi_list_maint() is called to put it on
the proper list, and readying it for either read or write actions.

8. Function osc_check_rpcs() builds RPCs for each object in lov_oinfo. Note
that each RPC can carry content for only one data object.

2.3.2 Group I/O (or Synchronous I/O)

Group I/O is triggered when an OAP page cannot be successfully put into cache, most
likely because of an insufficient grant. In that case, Lustre Lite will create a structure
obd_to_group to hold OAP. This page will then be added to the client obd’s ready
list, with the URGENT flag set. Finally, oig_wait() would be invoked and wait for
group I/O to finish.

Notice that group I/O waits on the operation; therefore, it is also known as syn-
chronous I/O. Second, all group I/O is urgent I/O as well as read operations. In con-
trast, in asynchronous I/O, the OAP cache (when admitted) will go into the write list.

It is also worth noting that except direct and lockless I/O, all reads are done as group
I/O. Direct I/O is briefly discussed below. Lockless I/O is a special kind of I/O (now
disabled except in liblustre) where clients do not get any locks but instead instructs the
server to take the locks on the client’s behalf.

2.3.3 Direct I/O

For direct I/O, VFS passes an iovec, which describes a segment of data to transfer. It
is simply defined by a start address void * iobase and a size, iov_len. Direct I/O
requires that the start address be page-aligned.
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Lustre Lite operates on each page and invokes ll_direct_IO_26() and obd_

brw_async(), and this essentially gets converted to osc_brw_async() calls that
later will be used for building RPC requests.

2.3.4 Interface with VFS

At the top level of VFS in general and Lustre Lite in particular, there are several places
where you can register your own read and write methods, all through address space
operation struct. For read operations, it is readpage() and its the vector version
of readpages(). For write, it is a bit more complicated. The first entry point is
writepage(), which can be triggered by:

• When memory pressure crosses the threshold, VM will trigger the flushing of
dirty pages.

• When a user application does an fsync() and forces the flushing of dirty pages.

• When a kernel thread does the periodical flushing of dirty pages.

• When the lock on the page is revoked (block request) by the Lustre lock manager,
the dirty page therefore must be flushed.

The implementation of readpage() and writepage() are optional, and not all
filesystems support them. However, these methods are needed to take advantage of
default read/write actors in kernel (i.e., the generic implementation of do_generic_
file_read() and do_generic_file_write()). It simplifies the interactions with
kernel cache and VM. Also, both methods are needed to provide mmap support.

Filesystem registers the functions prepare_write() and commit_write() via
an address space object as well.8 So, an address space object can be characterized as
the bridge from file space to storage space.

The address space operation in Lustre is defined in lustre/llite/rw26.c:

struct address_space_operations ll_aops = {
.readpage = ll_readpage,
.direct_IO = ll_direct_IO_26,
.writepage = ll_writepage_26,
.set_page_dirty = __set_page_dirty_nobuffers,
.sync_page = NULL,
.prepare_write = ll_prepare_write,
.commit_write = ll_commit_write,
.invalidatepage = ll_invalidatepage,
.releasepage = ll_releasepage,
.bmap = NULL

};

There is an *f_mapping field in file object pointing to the address space object
associated with the file. The connection is established at file object creation.

8Linux Kernel 2.6 introduces write_begin() and write_end()
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sys_write()

fget_light() vfs_write() fput_light()

ll_file_write()

init_sync_kiocb() ll_file_aio_write()

generic_file_aio_write()

__generic_file_aio_write_nolock()

generic_file_direct_write() generic_file_buffered_write()

__grab_cache_page()

ll_prepare_write()

filemap_copy_from_user()

ll_commit_write()

Figure 4: System call graph on the write path as in Linux kernel 2.6.22-14.

2.4 Read-Ahead

Lustre client read-ahead happens in read-page and is controlled by a structure, ll_
readahead_state, which is defined in lustre/llite/llite_internal.h. This
is a per-file structure and encodes the following information:

• Read history (a) how many contiguous reads have happened; (b) if it is stride
read mode, then how many contiguous stride reads have happened; and (c) stride
gap and stride length.
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• Read-ahead windows (i.e., read-ahead window starting and end points). The
more contiguous read happens, the longer the read-ahead window grows.

• State information that helps to detect read-ahead pattern.

The read-ahead algorithm is described below where each client could read-ahead a
maximum of 40MB:

1. In read-page (ll_readpage), the read-ahead state of the file will be updated
according to the current status.

(a) If this page offset is located in a contiguous window (in +8, -8 window
with the last page), then ras_consecutive_requests (defined by ll_

readahead_state) will increase by 1. If it is the first page of this read,
the read-ahead window length will increase by 1MB. So if the read is con-
tiguous, the read-ahead window increases with an increasing number of
read opeartions.

(b) If this page is not inside the contiguous window, then it will check whether
it is in stride-read mode. In this case, it will compare current stride length/stride
gap with past history. If they are equal, then ras_consecutive_stride_
requests will be increased by 1. If it is the first page of this read, stride
read-ahead window will also increase by 1MB.

(c) If page is neither in contiguous window nor in stride-contiguous window,
then all the read-ahead state will be reset. For example, ras_consecutive_
pages and ras_consecutive_requests will be reset to 0.

2. Next, read page will do real read-ahead according to the state updated in the
previous step.

(a) Increase the read-ahead window and try to cover all the pages for this read.
This explains why large reads perform better than small reads.

(b) Adjust the read-ahead window according to the real file length and calculate
how many pages will be read in this read-ahead.

(c) Do actual read-ahead.

There is a read-ahead stats file in the proc (/proc/fs/lustre/llite/XXXXX/
read_ahead_stats) where states of read ahead can be viewed.

3 LOV and OSC

From a high level perspective, the job of LOV is to direct pages to the correct OSCs
and OSC’s job is to assemble a vector of dirty pages, group them, and send them to
OST over the wire (of course, through the Portal RPC and LNET).
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3.1 OBD Device Operations

One of the general code organization patterns or implementation techniques employed
and that can be seen across LOV, OSC, and MDC are obd device oriented operations.
An obd device is characterized by a method table defined by struct obd_ops, some-
what similar to the aforementioned VFS file, inode, dentry operations. The idea is that
you can be insulated from knowing the exact obd devices you are talking to and use the
generic wrapper method prefixed by OBD_ instead. Let’s take a glimpse of the methods
this table defines:

struct obd_ops {
struct module * o_owner;
int (o_setup)(struct obd_device *dev, obd_count len, void *data);
int (o_attach)(struct obd_device *dev, obd_count len, void *data);
int (o_detach)(struct obd_device *dev);
int (o_setattr)(struct obd_export *exp, struct obd_info *oinfo ...);
...

}

Although there are over 70 methods defined in the structure, only a small set of
methods are supported across the board. Therefore, it has lost the generic character
that was originally envisioned. Nonetheless, this method table provides a roadmap for
us to explore activities around the particular obd devices.

For LOV, another pattern to note is that this is the layer that interprets stripe infor-
mation; therefore, a file operation here often becomes an operation on a set of objects.

When LOV module initializes, it registers the obd device operations it supports to
a class type manager. Essentially, this class type manager manages a class name and
its associated properties in a flat space.

rc = class_register_type(&lov_obd_ops, lvars.module_vars, LUSTRE_LOV_NAME);

3.2 Page Management

Page management is an activity across multiple layers. Page cache is a generic memory
space maintained by the kernel. Lustre pages are just those special pages the Lustre
system is aware of. The special properties are stored in the private field of a page
descriptor. It is divided into three portions: llap, lap and oap. The responsible layer
that will do manipulation on its portion are llite, lov and osc, correspondingly, as
illustrated below:

<-- llite --> <-- lov --> <-- osc -->
+------------+-----------+-----------+
| llap | lap | oap |
+------------+-----------+-----------+

To keep this discussion more tangible, we will refer to the following use case from
time to time to keep us focused: A user space application wants to create file A, then
write 6.5MB of data to it. The stripe size is 1MB, stripe width is 3, and OSTs are
numbered as OST1, OST2, and OST3. The file A’s data objects are named A1, A2, and
A3, correspondingly. The other files on these particular OSTs will be called B1, B2, B3
and C1, C2, C3, as illustrated in Figure 5. At this point, we need to define or clarify a
few concepts and data structures. At VFS and Lustre Lite layers, the read and write
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happens on the page unit – note that it has no bearing on the actual data transfer done
by Portal RPC and LNET.

A2 (2M)A1 (2.5M) A3 (2M)

OST 1 OST 2 OST 3

Figure 5: Lustre Lite object placement example.

A page of data needs to find its home on a file data object on the OST disk. The
location information is essentially a tuple of <OST index, offset within file data object
in page unit, offset within page>. Here is how it is defined:

struct lov_async_page {
int lap_stripe; /* same as OST logical index */
obd_id lap_loi_id; /* object id as seen by OST */
obd_off lap_sub_offset; /* offset within object in page-unit */
...

}
struct osc_async_page {

obd_off oap_obj_off; /* offset within object in page unit */
unsigned oap_page_off; /* offset within a page */
...

}

3.3 From OSC Client To OST

To interact with an OST, the client side needs to create a corresponding OSC client
structure, client_obd. This is a one-to-one mapping. Note that client_obd repre-
sents other clients such as MGC, MDC as well. So in that sense, it is fairly generic and
some fields may only make sense for a particular client.

For each data object handled by OSC client, there is one lov_oinfo object (loi)
created, and each describes an object associated the OST. Each lov_oinfo further
links to OAP pages for both read and write.

The lov_oinfo struct has a link back to client_odb, therefore, it can be used
as the starting point, to search all lov_oinfo for each object this client is processing
and to continue to locate all OAP pages that have been cached dirty during the write
operation.

Figure 6 illustrates the case where two OSC clients interact with two OSTs. The
first OST holds data objects of A1, B2, and C3; the second OST holds A2, B1.
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loi

A1

loi

B2

loi

C3

loi

A2

loi

B3

loi

C2

OSC (client_odb)

OSC (client_odb)

Figure 6: Connecting OSC client, lov oinfo and OST objects.

3.4 Grant

Each client buffers some amount of dirty data. Currently, the default setting for each
OSC is 32 MB.9 Considering the number of clients we can have in the system, it is
easy to see that when all clients flush their dirty buffer, the server side might run out
of free space on the filesystem. To avoid this situation, the server establishes a certain
limit on the amount of dirty data it can flush or transfer for each client, known as the
grant. Clients are not allowed to have more dirty data than the grant. Clients can ask
for more, and the server exercises the discretion to increase the grant and by how much.
It is adjusted according to the amount of dirty data the client is caching. Every time a
client dirties a page, it is subtracted from that grant. When grant reaches zero, all I/O
becomes synchronous until the client can increase its grant.

4 LDLM: Lock Manager

The basic design idea of Lustre Lock Manager comes from VAX DLM. There are
some fundamental concepts we need to explain before we can dive into the code and
understand how it works.

4.1 Namespace

The first concept we will cover is the namespace. Whenever you request a lock, you
are asking a lock for a certain resource in a namespace, and there is one namespace
defined per Lustre service. To put this in a practical context, say your Lustre system
is composed of ten OSTs, then from LDLM point of view, there are ten namespaces.
Furthermore, MDS and MGS each have their own namespaces here. A namespace in
Lustre is defined by struct ldlm_namespace. It has a reasonable amount of comments
for the fields in the source code, so here we just focus on a few of the less-obvious ones.

9This is tunable through proc filesystem.
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Type Field Description
is this a client-side lock tree?

__u32

resources without any locks
int number of unused resources
atomic_t

__u64

ldlm_side_t ns_client

struct list_head *ns_hash hash table for all resources in this namespace
ns_refcount number of resources in the namespace

struct list_head ns_list_chain circular list of all namespaces
struct list_head ns_unused_list

ns_nr_unused

ns_locks number of locks in this namespace
ns_resources number of resources in this namespace

ldlm_res_policy ns_policy callback function when you have a lock request with 
intent

Figure 7: The fields of ldlm namespace data structure.

Some additional notes on ns_client: Each client only needs access to some por-
tions of a namespace, but not all of them. So each client carries a so-called shadow
namespace. ns_client is a flag that says this namespace is for client only and is not
complete (see Figure 8 for an illustration). ns_hash is a hash table for all resources
in this namespace. Notice that this is a pointer to the linked list, not just the linked list
itself.

Client 1 NS Client 2 NS

Server NS

Lock A

Lock B
Lock C

Lock A
Lock B

Lock C

Figure 8: Shadow namespaces on clients.

4.2 Resource

A lock is for protecting resources. In Lustre, the most common type of resources
are files. A local lock refers to a lock that is private, known only to the local entity.
Correspondingly, a global lock is visible to the others. Note that “global” in this case
may be a misnomer – it doesn’t mean the lock is actually broadcast and known by all
parties. In Lustre, it means you have a client copy of the lock, but server also got a
copy through client request.10

10The lock on the server may be called the master lock.
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A resource is defined in struct ldml_resource. Some highlights of the struct are
discussed below.

struct ldlm_namespace *lr_namespace Points back to the namespace this re-
source belongs to. If the resource is a object id (oid), then its namespace is the
associated OST. If it is fid, then its namespace is defined by the MDS.

struct list_head lr_granted, lr_converting, lr_waiting There are three
lists defined here to categorize different locks and their states requested on this
resource. Granted list is for all locks that have been granted use on this resource.
Waiting list is for locks requesting the resource, but must wait due to a conflict.
Converting list is for locks changing mode.

struct ldlm_res_id lr_name The name of the resource is defined in a struct,
which is a 4×64 bits long identifier. All types of resources, either fid or oid, will
be converted to this format as their generic resource name.

4.3 Lock Type and Mode

A lock has both a type and a mode. We discuss the mode first. There are six lock
modes along with a compatibility matrix to indicate if two locks are compatible. The
six modes are given below.

• EX Exclusive mode Before a new file is created, MDS requests EX lock on the
parent.

• PW Protective Write (normal write) mode When a client requests a write lock
from an OST, a lock with PW mode will be issued.

• PR Protective Read (normal read) mode When a client requests a read from
an OST, a lock with PR mode will be issued. Also, if the client opens a file for
execution, it is granted a lock with PR mode.

• CW Concurrent Write mode The type of lock that the MDS grants if a client
requests a write lock during a file open operation.

• CR Concurrent Read mode When a client performs a path lookup, MDS grants
inodebit lock with the CR mode on the intermediate path component.

• NL Null mode.

The corresponding matrix is given in Figure 9.
In Lustre, four types of locks are defined, and it is up to the client to decide what

type of lock it requests. The component that requests a lock from the lock manager is
the client, and it can be Lustre Lite, OSC or MDC. These four types of locks are given
below.

extent lock for protecting OST data, defined by struct ldlm_extent.

flock for supporting a user space request on flock, defined by struct ldlm_flock.
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NL CR CW PR PW EX
-----------------------------
NL 1 1 1 1 1 1
-----------------------------
CR 1 1 1 1 1 0
-----------------------------
CW 1 1 1 0 0 0
-----------------------------
PR 1 1 0 1 0 0
-----------------------------
PW 1 1 0 0 0 0
-----------------------------
EX 1 0 0 0 0 0
-----------------------------

Figure 9: Lock compatibility matrix.

inode bit lock for protecting metadata attributes, defined by struct ldlm_inodebits.

plain lock defined, but not in use and can be ignored.

4.4 Callbacks

Another concept associated with the lock request is the callback function. When a lock
is created, a client can supply three type of callbacks:

blocking callback There are two conditions where this callback will be invoked. First,
if a client requests a lock conflicting with this one (even if the request comes
from the same client), then this callback is invoked, so that if this client plays
“nice” and has no use for this lock anymore, it can release the lock and let the
other party have it. The second case is when a lock is revoked (after all references
went away and the lock was cancelled).

completion callback There are also two cases in which this callback will be invoked:
first, if the lock requested is granted; second, if the lock is converted, for exam-
ple, to a different mode.

glimpse callback This callback is used to provide certain information about underlying
properties without actually releasing the lock. For example, an OST can provide
such a callback to provide information on file size since only the OSTs know
exactly the size of a file object. This callback is then associated with the extent
lock on the file object and is invoked by the server upon receiving the client
request.

4.5 Intent

An intent is a piece of data supplied with a lock enqueue indicating special processing
is needed during lock enqueue, and the data themselves are the parameters for that
processing. Namespaces can have different intent handlers defined for such processing.
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The intent feature allows the caller of namei and lookup to pass some information
about what they want to accomplish in the end. The net effect of this is a reduced
number of RPC requests when interacting with the MDS.

A intent is defined as follows (inode.h):

struct intent {
unsigned int_opmask;
void * int_arg1;
void * int_arg2;

};

Six intention operations are defined (encoded in int_opmask). These are get at-
tributes, set attributes, insert or delete, open, create, and read links.

4.6 Lock Manager

Now let’s provide a general description of how the locking algorithm (implemented by
the lock manager) works in Lustre. The entry call to Lustre Distributed Lock Manager
(LDLM) changes with different Lustre versions; we take 1.6 branch code as our refer-
ence. There are two major types of requests an LDLM can service: first, when a lock is
requested, and second, when a lock is cancelled. We describe the two cases separately.

4.6.1 Requesting a Lock

1. A locking service client, whether it is a Lustre client, MDS, or OST, usually
starts with a call to ldlm_cli_enqueue(). This function first examines if the
lock requested belongs to the local namespace by checking the flag ns_client

in the namespace struct. Remember that each LDLM instance defines its own
namespace. If it is local, meaning that we don’t have to send RPC to communi-
cate, we skip to step 7; otherwise, we continue processing the lock remotely.

2. If the lock request is for a non-local namespace, we need to send lock enqueue
RPC to LDLM running on the server; this is done inside the ldlm_cli_enqueue().
On the server side, ldlm_handle_enqueue() unpacks the lock request first,
then creates a lock (ldlm_lock_create()). This lock is just an initial one
with some fields filled in from the original lock request; it has not been granted
yet. You can determine if a lock is granted or not by checking:

if (lock->req_mode == lock->granted_mode) { /* granted */
...

}

Now we move to the next step to check if the lock can be granted and what lock
should be granted.

3. ldlm_lock_enqueue() is the core step for granting the lock. It checks if the
lock intent is set. If no intent is set, then it checks for the lock type and invokes
the policy function defined for this lock type. The policy function will determine
if the request lock can be granted or not.

If the lock intent is set, go to step 6.
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4. For the resource for which the lock is being requested, two conditions need to be
checked as given below.

• Are there any conflicts with those granted locks?

• Are there any conflicts with those waiting locks?

If the answer to both questions is no, then no conflict is found, and the lock can
be granted. Call completion AST11, return the granted lock, and we are done.
Otherwise, continue.

5. For each conflicting lock, we need to call blocking AST. Blocking AST checks if
the lock is held at the server, then just sets a flag. If the lock is held at the client,
then a blocking RPC request must be sent. Either way, after all these are done,
put this new lock request on the waiting list, then return the lock with status as
being blocked.

A more detailed policy function implementation is provided later.

6. If the lock intent is set, then all that needs to be done is to invoke the intent
handler. The key point is that LDLM does not interpret intents. The parties
communicating with each other with intent do that; for example, MDS needs
to register its intent handler, and OST needs to register its intent handler. In
general, intent handler is registered per namespace by calling ldlm_register_
intent(). It is the LDLM’s responsibility to invoke them. The intent handler
will determine if the lock can be granted or not. LDLM just returns the result of
their verdict.

7. For a local lock request, it goes to a different branch at ldlm_cli_enqueue_
local(), except that in this case it doesn’t need to send an RPC anymore. It
will need to go through the two phases described above: creating a lock first,
then calling ldlm_lock_enqueue() to check if this can be granted. If either
lock is granted or if there are any errors, it returns immediately with the lock
marked correspondingly. Otherwise, lock request is being blocked, and it needs
to wait for it.

Please note that a server (e.g., MDS or OST) can initiate a lock request by di-
rectly calling ldlm_cli_enqueue_local() since they know the lock must be
held by the local LDLM server.

4.6.2 Canceling a Lock

A lock is usually released involuntarily, and the owner will hold it as long as possible
until: someone is asking for a conflicting lock, LDLM sends out a blocking AST, and
the block AST handler invoked on the LDLM client side. Now we enter the canceling
process. There are three counters in the lock that are related to the cancelling process.
These can be listed as (1) counts of active readers, (2) counts of active writers, and (3)
counts of users.

11AST is the acronym for Asynchronous System Trap from VMS lock design. Here, we consider it to be
synonymous with a callback.
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1. The entry point for cancelling a lock is ldlm_cli_cancel(). This function
first checks if the sum of active readers and writers is zero. If not, it means an-
other process on the same client is using the lock so, we do nothing. Eventually,
the other client(s) will release the lock and follow the same code path and reach
this checkpoint, then it will move to the next step.

2. Now when the sum of readers and writes count reaches zero, we call blocking
AST with a flag set indicating this lock is being revoked.

3. Check if this lock is in the local namespace. If it is not, send cancel RPC to client
(Lustre client). If so, the server side calls ldlm_handle_cancel() to cancel
the lock.

A cancel operation essentially involves steps that take this lock of all the lists it
is currently on, such as granted list, waiting list, etc. Later, obd_cancel() will
be called not to cancel the lock, but just to release the references on reader and
writer counts.

4. Now that the lock has been cancelled, server can reprocess all waiting locks on
the resource. It essentially goes through the same logic to determine if their lock
requests can be granted.

5. If a waiting lock request can be granted, move it to the granted lock list, then
invoke the completion AST.

4.6.3 Policy Function

As we discuss in the section on requesting a lock (4.6.1), policy function is being
called to determine if the requested lock is in conflict with existing requests, based on
the lock type. We have four lock types, and these are inodebits, extent, flock, and plain.
Therefore, we need four policy functions. They all follow a similar overall flow, with
some minor changes. In this section, we give an overall description on the overall flow.

1. There are two given parameters and these are lock request and a flag of first_
enq. This flag means to signal if this is first time we do an enqueue request.
If this is the first time, the waiting list needs to be processed and send blocking
ASTs when necessary. If this is not the first time, then we already sent out
blocking AST before, so there is no need to do it again.

Another important thing about first_enq parameter is that when it is not set
(which means we are reprocessing a lock already in the waiting list), we stop
processing the waiting list after we find our own earlier entry in the list. Since
the rest of the locks were enqueued at a later point in time, those can be ignored
safely.

2. The policy function calls on a helper function for real work, passing in as param-
eters both lock list, enqueue flag, as well as a RPC list, either NULL or a empty
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list. The first time, the helper function is called with a granted lock list. For each
lock in the list, it performs the following conflict detection.12

(a) It always starts with mode checking. If two locks are compatible (refer to
the previous section for the compatibility matrix), then no more checking
is needed, and a lock can be granted. We continue only if locks are in-
compatible and the lock type is not plain since plain lock is not actually in
use.

(b) For the extent lock type, if the interval or range does not intersect, then
there is no conflict. However, within the boundary of a stripe size, LDLM
always tries to grant the largest extent possible to reduce the possibility of
further requests in case the client asks for more locks.

(c) For the inodebits lock type, if the bits requested (Lustre has a 64-bit lock
space, but only 3 are being used) intersect, then there are conflicts. 13

If the RPC list is NULL, we stop and return right after the first conflict is detected,
since by passing NULL, we obtained all the information that the caller requires.

If the RPC list is not NULL, we need to continue for each remaining locks and
add the conflicting lock into the RPC list.

3. If no conflicts are found, then the lock is granted. Otherwise, for each conflict
lock in the RPC list, we invoke blocking AST.

4. If first enqueue flag is set, then we go back to step 2, but this time, we invoke the
helper function with the lock list set as waiting list instead of granted list.

4.7 Use Cases

In this section, we use examples to give high level overview on processing lock re-
quests.

MDS: One Client Read

Let’s assume client C1 wants to open the file /d1/d2/foo.txt to read. During the
VFS path lookup, Lustre specific lookup routine will be invoked (see the Lustre Lite
section for details on this). The first RPC request is lock enqueue with lookup intent.
This is sent to MDS for lock on d1. The second RPC request is also lock enqueue with
lookup intent and is sent to MDS asking inodebits lock for d2. The lock returned is an
inodebits lock, and its resources would be represented by the fid of d1 and d2.

The subtle point to note is, when we request a lock, we generally need a resource id
for the lock we are requesting. However in this case, since we don’t know the resource
id for d1, we actually request a lock on its parent /, not on the d1 itself. In the intent,

12An implementation can choose to implement its own policy function and conflict detection, not neces-
sarily follow exactly as we presented here.

13It groups locks based on the bits (more precisely, it is based on the integers formed by the 3-bit value
since only 3-bits are in use), so you only need to check one member in each group to make a decision, as a
performance optimization.
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we specify it as a lookup intent and the name of the lookup is d1. Then, when the lock
is returned, the lock is for d1. This lock is (or can be) different from what the client
requested, and the client notices this difference and replaces the old lock requested with
the new one returned.

The third RPC request is a lock enqueue with open intent, but it is not asking for
lock on foo.txt.14 That is, you can open and read a file without a lock from MDS
since the content is provided by OST. Requesting locks from an OST is a different
matter and is discussed later.

In other words, what happens at open is that we send a lock request, which means
we do ask for a lock from LDLM server. But, in the intent data itself, we might (or not)
set a special flag if we are actually interested in receiving the lock back. And the intent
handler then decides (based on this flag), whether or not to return the lock.

If foo.txt exists previously, then its fid, inode content (as in owner, group, mode,
ctime, atime, mtime, nlink, etc.) and striping information are returned.

If client C1 opens the file with the O_CREAT flag and the file doesn’t exist, the
third RPC request will be sent with open and create intent, but still there will be no
lock requests. Now on the MDS side, to create a file foo.txt under d2, MDS will
request through LDLM for another EX lock on the parent directory. Note that this is a
conflicting lock request with the previous CR lock on d2. Under normal circumstances,
a fourth RPC request (blocking AST) will go to client C1 or anyone else who may have
the conflicting locks, informing the client that someone is requesting a conflicting lock
and requesting a lock cancellation. MDS waits until it gets a cancel RPC from client.
Only then does the MDS get the EX lock it was asking for earlier and can proceed.15

If client C1 opens the file with LOV_DELAY flag, MDS creates the file as usual, but
there is no striping and no objects are allocated. User will issue an ioctl call and set
the stripe information, then the MDS will fill in the EA structure.

MDS: Two Clients

If C1 wants to create a file foo.txt under the directory /d1/d2, then no locks are
required on foo.txt, but it will request a lock on d2 with the intent of instructing
MDS to “open and create” the file foo.txt and possibly to return a lock on that file.

It acquires a CW lock intentionally on foo.txt. Now C2 comes in and wants to
create a new directory d3 under /d1/d2. At this point nothing will change as far as
the CW lock is concerned.

OST: Two Clients Read and Write

After the MDS fills in the EA structure, the client has the file handle and stripe infor-
mation. The client can now talk to OSTs. Let’s assume we have four OSTs and two
clients. Client C1 reads file A and the second client C2 writes to file A. We further
assume that C1 wants to read data objects, A1, A2, A3, and A4.

14Lustre Lite always decides no need for a lock unless it is from NFS.
15In the current code, client gets smart. When it sees that it will create a new file, it cancels the lock on

d2 itself by embedding the cancel operation on the third RPC request. This saves two RPCs, one blocking
AST from MDS to client and one cancel RPC from client to MDS.
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First, client C1 sends lock enqueue requests to OSTs 1 through 4 in parallel, asking
for read lock with intent flag set. What it means is, if any of the objects client C1 is
asking has a blocking request, don’t try to get the lock, just return back the information
(file size, modification time, etc.) described by a data structure called lvb (Lustre
Value Block) (the lock request is a glimpse because it has intent flag set).

If there are no conflicts, the client will be granted read locks on the entire file
objects, with lock mode as PR. Now the client has four read locks on four OST file
objects. Let’s further assume that the client only wants to read A1. Since it has the
lock, it can now go ahead and read it.

Assume C2 is writing to OST3. Instead of returning a PR lock, OST3 will contact
C2 and ask for the lvb information. It then would return this format back to C1: “I am
not issuing you the lock on A3, but here is the state of that object”.

This was done just to determine the file size, and we need to know the file size, for
example, if we are trying to read beyond the file size. If the content of read falls into
the object you already hold a PR lock on, then no further RPCs for that lock are needed.

Now if the content the client needs to read is on A3, then it has no choice but to
send a read lock request (without intent this time) to OST3. Within the request itself,
the client should also make clear to what extent it is requesting the lock. If the extent it
is requesting is not conflicting (intersecting reads) with the PW write lock C2 is holding,
then the read lock request will be immediately granted.

If a conflict exists, then OST3 will reply to C1 that the lock request is not granted
and at the same time, it will send a blocking request to C2. There are two cases to
consider from the perspective of C2:

1. If the write() system call is done, meaning that all data has been written to
some buffer (maybe not to disk yet), then the buffers will have the dirty flag set.
In that case, the client flushes all dirty buffers, probably through one or more bulk
writes. Then it releases the lock (lock reference count is now zero) by sending a
cancel RPC to OST3.

2. If the write() is still in progress, then the system call hasn’t returned yet. At
this point, the lock reference count is non-zero and the blocking AST won’t reach
the lock logic. Only after the write system call finishes (it actually means at least
two things here, one, the data is all in cache and two, the lock reference count is
decreased to zero), then it can go to the step explained above.

After OST3 gets the cancel request from C2, it will send a completion AST to client
C1, telling that now its lock request is granted.

We don’t explain a case where both clients do read because it is trivial, as both of
them can get PR locks, even with their extent intersecting.

If one client doesn’t play nice and doesn’t cooperate in releasing its lock, then a
timer is started the moment it was sent a blocking AST. If the client doesn’t release
the lock and there is no ongoing I/O under that lock for the duration of the timeout,
then the client is evicted. However, if there is ongoing I/O, then on every I/O RPC the
timeout is prolonged.
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5 OST and obdfilter

/* Sigh - really, this is an OSS, the _server_, not the _target_ */
static int ost_setup(struct obd_device *obd, obd_count len, void *buf)
{ ... }

from Lustre source tree b16

Lustre source tree lustre/ost and all function names prefixed with ost_ should
probably be regarded as server (OSS) functions, if we understand the above comment
correctly.

5.1 OSS as OST

OST is loaded as a kernel module. It works closely with obdfilter and does most of
the server/OST side of the work. Between these two layers, OSS is the switch layer
or the thin layer, and it interprets requests from Portal RPC, prepares for requests, and
then passes requests to obdfilter for further processing. In the following discussion,
we focus on two aspects of it: initial setup and switching structure, implemented by
ost_setup() and ost_handle(), respectively.

Initial Setup

• First, the OST checks if the OSS thread number is specified. If not, then it
computes the minimum number of threads based upon the CPU and memory
and ensures that there is 4x dynamic range between the minimum and maximum
number of threads.

oss_min_threads = num_possible_cpus() * num_physpages >> (27 - CFS_PAGE_SHIFT);
if (oss_min_threads < OSS_THREADS_MIN)

oss_min_threads = OSS_THREADS_MIN;
/* Insure a 4x range for dynamic threads */
if (oss_min_threads > OSS_THREADS_MAX / 4)

oss_min_threads = OSS_THREADS_MAX / 4;
oss_max_threads = min(OSS_THREADS_MAX, oss_min_threads * 4 + 1);

To get the obd device of the OST; the following function call is used.

struct ost_obd *ost = &obd->u.ost;

• Then, the server side initiates RPC services by:

ost->ost_service = ptlrpc_init_svc( , , , , , , ost_handle, , , , "ll_ost");

The function returns the pointer to struct ptlrpc_service. One important
thing to note is that we have supplied a handler, ost_handle. Once the service
is set up as shown below, Portal RPC will dispatch the request to this handler for
further processing. That is the subject of the following section.

• The prtrpc threads are started as:

rc = ptlrpc_start_threads(obd, ost->ost_service);
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• The similar call sequence is repeated for creating ost create threads and the re-
turned service handle is assigned to ost->ost_create_service. It is also
repeated for ost io threads, and a service handle is assigned to ost->ost_io_

service.

• And finally, the ping eviction service is started.

Dispatching

The handler function takes one input parameter, struct ptlrpc_request *req,
and it is driven largely by the type of request. The decoding of type of request is through
passing req->rq_reqmsg (which points to struct lustre_msg) to a helper function
lustre_msg_get_opc() provided by Portal RPC. Thus the dispatch structure looks
like:

swtich (lsutre_msg_get_opc(req->rq_reqmsg)) {
case OST_CONNECT:

...
rc = target_handle_connect(req, ost_handle);
break;

case OST_CREATE:
...
rc = ost_create(req->rq_export, req, oti);
break;

case OST_WRITE:
...
rc = ost_brw_write(req, oti);
RETURN (rc);

case OST_READ:
...
rc = ost_brw_read(req, oti);
RETURN(rc);

}

The exception handling includes the possible recovery, which can happen during
any request except the OST_CONNECT. Also, we need to check for connection coming
from an unknown client by checking NULL of req->rq_export.

5.2 OST Directory Layout

This section describes what you will observe on the disk when logging onto an OST
node. The filesystem on the disk is most likely ldiskfs for now. It means the backend
data is really stored as a regular file, organized in a certain Lustre specific way:

Group Number

Under the top level directory on an OST is the subdirectory named for each group. This
layout accommodates clustered MDSs where each group corresponds to one MDS. As
of now, only one MDS is in use, so only group zero is effective. 16

16In fact, there is a special group for echo client as well, so that MDS and echo client do not conflict when
run at the same time.
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Object Id

Under each group, 32 subdirectories are created. For each file object, its last five digits
are used to identify which subdirectory this file should reside with. Here, the filename
is the object id.

5.3 obdfilter

The obdfilter device is created when the OST server is initialized. For each OST, we
have an associated obdfilter device. For each client connection, the obdfilter creates
an export as the conduit of communication. All the exports are maintained in a global
hash table, and the hash key is also known as UUID, as shown in both Figure 10 and
11. The Portal RPC layer makes use of UUIDs to quickly identify to which export (and
obdfilter device) the incoming request should go. Also, each obdfilter device maintains
a list of the exports it is serving. This relationship is illustrated in Figure 10.

OST1

obdfilter

OSC1

OSC2

import
A1Client A

import
A2

B2 Export

A1 Export

B2 UUID

A1 UUID

OST2

obdfilter B1 Export

A2 Export

B1 UUID

A2 UUID

Export
A1

Export
B2

Export
A2

Export
B1

OSC1

OSC2 import
B1

Client B import
B2

Figure 10: Import and export connections between an OSC and obdfilter.

The obdfilter provides the following functions:

• handles create request, presumably from MDS for file data objects.

• handles read and write requests, from OSC clients.

• handles connect and disconnect requests from lower Portal RPC layer for estab-
lished exports and imports.

• handles destroy (which involves both client and MDS) requests.

5.3.1 File Deletion

The destroy protocol is as follows. First, the client decides to remove a file and this
request is sent to MDS. MDS checks the EA striping and uses llog to make a trans-
action log. This log contains the following: <unlink object 1 from ost1, unlink object
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2 from ost2, etc.>. Then, MDS sends this layout and transaction log back to the client.
The client takes this log and contacts each OST (actually obdfilter) to unlink each file
object. Each successful removal is accompanied by a confirmation or acknowledgment
to the unlink llog record. Once all unlink llog records on MDS have been acknowl-
edged, the file removal process is completed.

5.3.2 File Creation

As discussed earlier in Section 5, all requests are handled by OST and obdfilter to-
gether. Now, we will walk through the handling of a create request. The first portion
of request handling is done inside ost_create() as follows.

1. Prepare the size of reply message. It is composed of two records and thus re-
quires two buffers. The first record is for portal rpc body, and the second, for the
ost reply body.

__u32 size[2] = { sizeof(struct ptlrpc_body), sizeof(*repbody)};

2. Get a pointer to the request body from the original request and do byte swapping
when necessary.

struct ost_body *body = lustre_swab_reqbuf(req, REQ_REC_OFF,
sizeof(*body), lustre_swab_ost_body);

The last parameter is the swab handler, which is called only when the swapping
is necessary. Client side uses native byte order for its request, along with a pre-
agreed magic number. Server side reads the magic number to decide if a swap is
needed.

3. Do the actual space allocation, and fill in preliminary header information.

rc = lustre_pack_replay(req, 2, size, NULL);
repbody = lustre_msg_buf(req->rq_repmsg, REPLY_REC_OFF,sizeof(*repbody));

After the first call, req->rq_repmsg points to the newly allocated space. The
second call assigns repbody of the starting address for the buffer of the reply
body.

4. Finally, it fills in the reply body with exactly the same contents as a request body
and passes on to obdfilter for further processing.

memcpy(&repbody->oa, &body->oa, sizeof(body->oa));
req-rq_status = obd_create(exp, &repbody->oa, NULL, oti);

For the create request, the entry point for obdfilter is through filter_create().

static int filter_create(struct obd_export *exp, struct obdo *oa ..)

We ignore the processing related to struct lov_stripe_md **ea and struct obd_

trans_info *oti because the former is a legacy code and is unlikely to be used in
the future.
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1. First, save the current context and assign this client its own operation context.
This is for specifying necessary information for the thread if it wants to access
the backend filesystem. It is like a sandbox limiting the reach of server threads
when processing requests from clients; it stores “filesystem root” and “current
working dir” for the server thread (not obtained from the client, of course, but
rather dependent on which OST we are working on).

obd = exp->exp_obd;
put_ctxt(&saved, &obd->obd_lvfs_ctxt, NULL);

2. If the request is for recreating an object, then we cancel all extent locks on
the recreated object by acquiring the lock on the object and call on filter_

recreate() to do the actual job. Otherwise, we follow the normal flow of
precreating objects. The reason for precreating is that, conceptually, when MDS
asks an OST for creating an object, OST doesn’t just create one object, it creates
multiple objects with object id assigned. These batch created objects have a disk
size of zero. The goal is, when MDS responds to a client request next time for
creating new file, it doesn’t have to send a request to OST again to present the
layout information to client. By taking a look at the pool of precreated objects
from each OST, MDS may already have all the information needed to reply to
the client.

if (oa->o_valid & OBD_MD_FLFLAGS) &&
(oa->o_flags & OBD_FL_RECREATE_OBJS)) {

rc = ldlm_cli_enqueue_local(obd->obd_namespace, &res_id, ... );
rc = filter_recreate(obd, oa);
ldlm_lock_deref(&lockh, LCK_PW);

} else {
rc = filter_handle_precreate(exp, oa, oa->o_gr, oti);

}

Here, rc returned from precreate handler is either a negative, indicative of an
error, or a non-negative number, representing the number of files created.

3. Now, we take a closer look at the function of precreate:

When a client contacts an OST with a precreated object id, OST knows that this
object id now is activated. However, this presents a problem such that, if the
MDS has failed, it now has stale information on precreated objects. To resolve
this conflict, when MDS is restarted, it checks its records on unused precreated
objects and sends requests to OSTs to delete these objects (delete orphans). The
obdfilter takes these requests and skips those objects that are actually in use (but
out of synchronization with MDS’s own record) and removes the rest of it. This
is the first part of what filter_handle_precreate() will do:

if ((oa->o_valid & OBD_MD_FLFLAGS) &&
(oa->o_flags & OBD_FL_DELORPHAN)) {
down(&filter->fo_create_lock);
rc = filter_destroy_precreated(exp,oa,filter);
...

} else {
rc = filter_precreate(obd, oa, group, &diff);
...

}

UNDERSTANDING LUSTRE INTERNALS



6 MDC AND LUSTRE METADATA 39

4. Finally, the create request is passed onto fsfilt and is completed by a VFS
call. The process will later go through more steps, such as getting hold of parent
inode, transaction setup, etc.

rc = ll_vfs_create(dparent->d_inode, dchild,
S_IFREG | S_ISUID | S_ISGID | 0666, NULL);

6 MDC and Lustre Metadata

6.1 MDC Overview

The MDC component is layered below Lustre Lite. It defines a set of metadata re-
lated functions that Lustre Lite can call to send metadata requests to MDS. The set of
functions is implemented in lustre/mdc, and we discuss them in Section 6.3.

Lustre Lite passes the request parameters in a mdc_op_data data structure, and
all requests must eventually be converted to a structure known as the ptl_request.
Therefore, before a RPC request can be carried out, there are several steps for preparing
it (packing). Within the mdc_lib.c, there are a number of functions defined for this
purpose. In turn, some of these functions actually invoke packing helper methods
provided by the Portal RPC layer.

Once ptl_request is ready, MDC can then invoke ptlrpc_queue_wait() to
send the request. This is a synchronous operation, and all metadata operations with
intent are also synchronous. There are other ptlrpc methods for send operations and
used for metadata operations without intent (mdc reint)—this is done in code mdc_

reint.c.
For the most part, the driver of converting from mdc_op_data to ptl_request

and the call to enqueue the request are done in function mdc_enqueue, implemented
in lustre/mdc/mdc_locks.c.

6.2 Striping EA

Depending on where the striping EA is created or used, there are three formats:

• On-disk format, used when it is stored on MDS disk, described by struct lov_

mds_md.

• In-memory format, used when it is read into the memory and unpacked, de-
scribed by struct lov_stripe_md.

• User format, used when the information is to be presented to the user, described
by struct lov_user_md.

The user format differs from on-disk format in two aspects:

• The user format has lmm_stripe_offset, which on-disk format does not have.
This field is used to transfer the striping_index parameter to Lustre when
user wants to set a stripe.

• The user format has lmm_stripe_count as 16-bit, whereas on-disk format has
this field as 32-bit.
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6.3 Striping API

Five types of APIs are defined to handle striping EA. These are listed below.

set/get API To set or get a stripe EA from storage. It operates on on-disk striping EA.

int fsfilt_set_md(struct obd_device *obd, struct inode *inode,
void *handle, void* md, int size, const char *name)

int fsfilt_get_md(struct obd_device *obd, struct inode *inode,
void *md, int size, const char *name)

Here, md is the buffer for the striping EA, handle is the journal handle, and
inode refers to the MDS object.

pack/unpack API As striping EAs are stored in packed format on disk, they are un-
packed after fsfilt_get_md() is called. These APIs can be used for both
on-disk and in-memory striping EA.

int obd_packmd(struct obd_export *exp, struct lov_mds_md **disk_tgt,
struct lov_stripe_md *mem_src)

int obd_unpackmd(struct obd_export *exp, struct lov_stripe_md **mem_tgt,
struct lov_mds_md *disk_src, int disk_len)

Here, mem_src points to the in-memory structure of striping EA, and disk_tgt
points to the disk structure of striping EA. Conversely, disk_src is the source
for on-disk striping EA, while mem_tgt is the target for in-memory striping EA.

alloc/free API Allocates and frees striping EA in memory and on-disk.

void obd_size_diskmd(struct obd_export *exp, struct lov_mds_md *dis_tgt)
int obd_alloc_diskmd(struct obd_export *exp, struct lov_mds_md **disk_tgt)
int obd_free_diskmd(struct obd_export *exp, struct lov_mds_md **disk_tgt)
int obd_alloc_memmd(struct obd_export *exp, struct lov_stripe_md **mem_tgt)
int obd_free_memmd(struct obd_export *exp, struct lov_stripe_md **mem_tgt)

striping location API Returns data object location information from striping EA.

obd_size love_stripe_size(struct lov_stripe_md *lsm, obd_size ost_size, int stripeno)
int lov_stripe_offset(struct lov_stripe_md *lsm, obd_off lov_off,

int stripeno, obd_off *obd_off)
int lov_stripe_number(struct lov_stripe_md *lsm, obd_off lov_off)

Here, lov_off is the file logical offset. The stripeno is the stripe number of
the data object.

lfs API User-level API to handle striping EA and is used by the lfs utility.

int llapi_file_get_stripe(const char *path, struct lov_user_md *lum)
int llapi_file_open(const char *name, int flags, int mode,

unsigned long stripe_size, int stripe_offset, int stripe_count,int stripe_pattern)

Here, llapi_file_get_stripe() will return a user striping EA given a path,
and llapi_file_open() opens/creates a file with a user specified stripe pat-
tern. It is also worth noting that stripe_offset is the same as stripe_index
used in user space, and it is the OST index of the first stripe.
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7 Infrastructure Support

This section discusses miscellaneous aspects related to Lustre initialization, client reg-
istration, obd devices management, etc.

7.1 Lustre Client Registration

Lustre client side or Lustre Lite registers as a filesystem with the name “lustre.” The
file system type is defined as:

struct file_system_type lustre_fs_type = {
.owner = THIS_MODULE,
.name = "lustre",
.get_sb = lustre_get_sb,
.kill_sb = lustre_kill_super,
.fs_flags = FS_BINRARY_MOUNTDATA | FS_REQUIRES_DEV

LL_RENAME_DOES_D_MOVE,
};

Another function defined by lustre_register_fs() simply invokes kernel func-
tion:

return register_filesystem(&lustre_fs_type);

and will be done with the registration. This was invoked when obdclass as a
module was being initialized.

int init_obdclass(void) {
...
#ifdef __KERNEL__

err = lustre_register_fs()
#endif
}

See class_obd.c for more details.

7.2 Superblock and Inode Registration

It should be a relatively simple matter, but Lustre jumps through several hoops that
may be due to some legacy support issues.

When Lustre Lite initializes as a Linux module, init_luster_lite() was de-
fined in super25.c 17 Among things such as allocating inode cache, it assigns (essen-
tially) the function pointer *client_fill_super with ll_fill_super.

In the luster_fill_super() method, we check if this is a client mount. If it is,
it makes calls to (*client_fill_super)(sb), where sb is the superblock.

17It is actually used for Linux Kernel 2.6 as well.
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7.3 OBD Device

OBD device is meant to provide a level of abstraction on Lustre components such that
the generic operations can be applied without knowing the specific devices you are
dealing with. We discussed the method tables defined on it in Section 5. Lustre also
provides some generic infrastructure for managing object devices. The core structures
are obd_devices and exports. We discuss them in detail.

Each obd device was assigned an integer number, there are at most MAX_OBD_
DEVICES obd devices that can be created on a given node. You can retrieve an obd
device through an integer number (obd_minor), a name, or a uuid. All obd devices
are stored in an array internally. However, the preferred way to retrieve an obd device
is through a set of API as discussed below.
struct obd_device *obd_devs[MAX_OBD_DEVICES]

The API can be roughly divided into five categories:

• Register and unregister a device type.

• Allocate and free obd devices. obd_device_alloc(), obd_device_free().

• Create and release obd devices. You can create new obd devices by giving a
string type and string name through class_newdev(). You can release one by
giving a pointer to obd_device that it is to be released. In both cases, they
internally invoke allocation and free functions.

• Search. You can search by type through class_search_type();

• Conversion utilities.

7.4 Import and Export

For two OBD devices A and B to communicate, they need an import and export pair:
Aimport and Bexport . Aimport is for sending requests and receiving replies, and Bexport is
for receiving requests and sending replies. However, the same pair cannot be used the
other way around: that is you cannot send a request through Bexport . For that to happen,
such as in the case of sending ASTs, you need so-called “reverse import.” Essentially,
reverse import converts the Aimport and Bexport pair into an Aexport and Bimport pair. The
need for establishing such a pair at OBD devices is partially illustrated in Figure 11.

Note that LOV, OSC, and OST in the figure are all defined as types of OBD devices.

8 Portal RPC

Portal RPC provides basic mechanisms for

• sending requests through imports and receiving replies,

• receiving and processing requests through exports and sending replies,

• performing bulk data transfer, and

• error recovery.
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Figure 11: Setup export and import.

8.1 Client Side Interface

We will first discuss the interface of Portal RPC without going into implementation
details. We will use the LDLM’s send mechanism as an example. For this example,
LDLM is sending a blocking AST RPC to a client that is the owner of a given lock
(ldlm_server_blocking_ast) and also acting as the lock manager. This example
will help us better illustrate how a client uses Portal RPC API.

First, we prepare the size for this request as given below.

struct ldlm_request *req;
__u32 size[] = { [MSG_PTLRPC_BODY_OFF] = sizeof(struct ptlrpc_body),

[DLM_LOCKREQ_OFF] = sizeof (*body) };

A request can be seen as a sequence of records, where the first record has an offset
of 0, the second record has an offset value 1, and so on. Once the size is determined,
we can invoke ptlrpc_prep_req(). The prototype of this function is as follows:

struct ptlrpc_request *
ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode,

int count, __u32 *lengths, char **bufs)

The RPC communication needs an import on the client’s side, and it is created
during the connect phase. The *imp points to this particular import, and version
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specifies the version to be used by the Portal RPC internals to pack the data. Packing
here is the on-the-wire format that defines how the buffers are actually situated in the
network packet. Each subsystem defines a version number to distinguish its layout
request—for example, MDC and MDS define their version, MGC and MGS define
another.

The opcode specifies what this request is about. Each subsystem defines a set of
operation codes (see lustre_idl.h for more information). The count is the number
of buffers needed for this request, and *length is an array with each element specify-
ing the size of the corresponding requested buffer. The final parameter signals Portal
RPC to accept (copy the data over) and process the incoming packet as is. For our
example, this function is invoked as given below.

req = ptlrpc_prep_req(lock->l_export->exp_imp_reverse,
LUSTRE_DLM_VERSION, LDLM_BL_CALLBACK, 2, size, NULL);

This declaration indicates that there are two buffers requested and the size of each
buffer is represented by size in the parameter list.

In addition to the housekeeping, the above call allocates the request buffer and
saves it in req->rq_reqmsg. The address of the interested record can be acquired by
specifying the record offset:

body = lustre_msg_buf(req->rq_reqmsg, DLM_LOCKREQ_OFF, sizeof(*body));

On the server side, we see this same helper method with similar input parameters
used to extract the field of interest. Once the buffer structure is obtained, necessary
fields for the request can be further filled in. After all is done, there are several ways to
send the request, as listed here.

ptl_send_rpc() A primitive form of RPC sending, which doesn’t wait for a reply
and doesn’t try to resend when failure occurs. It is not a preferred way of doing
RPC send.

ptlrpcd_add_req() A completely asynchronous RPC sending, handled by the ptl-
rpcd daemon.

ptlrpc_set_wait() A synchronous RPC sending of multiple messages, which re-
turns only when it gets if all of the replies back. First, ptlrpc_set_add_req()
must be used to add the request to a pre-initialized set, which contains one or
more requests that must be sent together.

ptlrpc_queue_wait() Probably the most common way of sending RPC, which is
synchronous and returns only after an RPC request is sent and a reply is received.

The last step after invoking this RPC request is to release the resource references
by calling ptlrpc_req_finished(req).
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8.2 Server Side Interface

The server side uses Portal RPC in a completly different way from the client side. First,
it initializes the service with the function call given below.
struct ptlrpc_service * ptlrpc_init_svc (

int nbufs, /* num of buffers to allocate */
int bufsize, /* size of above requested buffer */
int max_req_size, /* max request size server will accept */
int max_reply_size, /* max reply size server will send */
int req_portal, /* req service port in lnet */
int rep_portal, /* rep service port in lnet */
int watchdog_factor, /* wait time for handler to finish */
svc_handler_t handler, /* service handler function */
char *name, /* service name */
cfs_proc_dir_entry_t *proc_entry, /* for procfs */
svcreq_printfn_t svcreq_printfn, /* for procfs */
int min_threads, /* min # of threads to start */
int max_threads, /* max # of threads to start */
char *threadname /* thread name prefix */

)

Once the call returns, the request can come in and the registered handler function
will be called. Usually, server divides the task at hand into several types. For each type,
it creates a different pool of threads. These threads could share the same handler. The
reason for different pools is to prevent starvation. In some cases, multiple pools also
prevent deadlocks, where all threads are waiting for some resource to become free to
handle a new RPC.

8.3 Bulk Transfer

The client first sends a bulk RPC request. Let’s assume this is a write request. It
contains descriptions of what to send. Now the server processes the request, allocates
the space, and then takes control of the data transfer. The next RPC from the server
will perform a bulk transfer of the data to the pre-allocated spaces. One such example
is done in the osc_brw_pre_request(). Let’s walk through the process:

1. Bulk transfer is initiated with the preparation as discussed before. However, the
prepare request is different in the sense that we are asking the request from a
pre-allocated pool, which is the case if the request itself can be associated with a
low-memory situation.

req = ptlrpc_pre_req_pool(cli->cl_import, LUSTRE_OST_VERSION,
opc, 4, size, null, pool)

The opc in this case can be, for example, OST_WRITE.

2. Next, we specify the service portal. In the import structure, there is a default
portal that this request will go, but in this case for the sake of the example, let’s
assume the request will be handled by a specific portal:

req->rq_request_portal = OST_IO_PORTAL;

3. Then, we need to prepare the bulk request. We pass in as parameters the pointer
to the request, number of pages, type, and destination portal. The return is a bulk
descriptor for this request. Notice that the bulk request goes to a different portal:
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struct ptlrpc_bulk_desc desc = ptlrpc_prep_bulk_imp(req, page_count,
BULK_GET_SOURCE, OST_BULK_PORTAL);

4. For each page to be transferred, we invoke the ptlrpc_prep_bulk_page()

and add one page at time to the bulk descriptor. There is a flag in the request
indicating that this is a bulk request and we should check this descriptor to obtain
all the layout information on pages.

struct ptlrpc_request {
...
struct ptlrpc_bulk_desc *rq_bulk;
...

}

At the server side, the overall preparation structure is similar, but instead of prepar-
ing for import, now it prepares for an export. An example of it can be seen in ost_

brw_read() in ost handler.

desc = ptlrpc_prep_bulk_exp(req, npages, BULK_PUT_SOURCE, OST_BULK_PORTAL);

The server side also needs to prepare each bulk page. Later, the server side can start
the transfer by:

rc = ptlrpc_start_bulk_transfer(desc);

At this point in time, the first RPC request from the client has been processed by
the server, and the server is ready for the bulk data transfer. Now the server can start
the bulk RPC transfer as we mentioned at the begining of this section.

NRS Optimization

On the server side, another point to note is that we can receive a huge number of de-
scriptors that describe the page layout to read or write. This presents an opportunity
for an optimization if there are any neighboring reads or writes going to the same re-
gion. If there are, perhaps they can be grouped and processed together. That is the
subject of the Network Request Scheduler (NRS). This also displays the significance
of a two-phase bulk transfer, which allows us to get an idea of the incoming/outgoing
data without actually getting the data first, so that they can be reorganized for better
performance. The second reason for the two-phase operation is that as the service ini-
tialization increases on the server, a certain amount of buffer space is allocated. When
client requests come in, they will be buffered in this space first before further process-
ing, as pre-allocating a huge amount of space there just to accommodate potential bulk
transfers is not preferred. Also, it is important not to overwhelm server buffer space
with big data chunks, and two-phase operation helps in that context as well.

8.4 Error Recovery: A Client Perspective

Most of the recovery mechanism is implemented at the Portal RPC layer. We start
with a portal PRC request which is passed down from the upper level. Inside Portal
RPC, there are two lists maintained by the import that are important to our discussion.
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These are the sending and replay lists. The import also maintains imp->states and
imp->flags. The possible states are full, connecting, disconnecting, and recovery,
and flags can be invalid, active and inactive.

After the health status of the import is checked, the send request will continue. The
sequence of the steps is outlined here:

1. Send the RPC request, then save it into the sending list. Also start the obd timer
at the client side.

2. If a server reply is received before the timeout expires and the request is re-
playable18, then unlink it from the sending list and link it to the replay list. If the
request is not replayable, then upon receiving the reply, remove the request from
the sending list.

A reply from the server doesn’t necessarily mean it committed the data to the
disk (assuming the request alters on-disk data). Therefore, we must wait for a
transaction commit (a transaction num) from the server, which means that the
change is now safely committed to the disk. This last server-committed transac-
tion number is usually piggybacked with every server reply.

Usually, a request from MDC to MDS is replayable, but an OSC to OST request
is not, and this is only true if the asynchronous journal update is not enabled.
There are two reasons:

• First, a data request (read or write) from OSC to OST can be very large,
and keeping them in memory for replay can be a huge burden on memory.

• Second, OST uses only direct I/O (at least for now). The reply itself, along
with transaction number, is enough of a guarantee to say the commit is
done.

3. If a timer expires, then client marks this import state from full to disconnect.
Now the pinger kicks in and if the server responds to the pinger, then the client
will try to reconnect (connect with reconnect flags).

4. If the reconnect is successful, then we start the recovery process. We now mark
the state as recovery and start sending the requests in the replay list first, followed
by the requests in the sending list.

The key point about the pinger is that if requests are being sent frequently enough,
then the pinger is not needed. It is activated only if a client has an extended idle period,
and the pinger is used to keep the connection alive with the server so that it will not get
evicted due to inactivity. On the other hand, if client went offline for whatever reason,
the server will not get pinged by the client, and the server can still evict this client.

18Replay request only refers to those that will modify the on-disk data. For example, read is not a re-
playable request, but during recovery, they can still be resent if they are in the sending list.
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9 LNET: Lustre Networking

LNET is a message passing API, originated from Sandia Portals. Although there are
commonalities between the two, they are not the same thing. We will cover the Lustre
LNET without delving into the differences between the two.

9.1 Core Concepts

First, we need to clarify some terminology used throughout the rest of the section, in
particular, the process id, matching entry, matching bits, and memory descriptor.

Portal Table

process

Portal  index
ME ME ME

Match List

Ignore bits

Match bits
MD

Memory 
descriptor

Buffer (user)

Event Queue 
(EQ)

Figure 12: Illustration of Lustre LNET addressing scheme.

LNET Process Id

LNET identifies its peers using the LNET process id, defined as follows:

typedef struct {
lnet_nid_t nid;
lnet_pid pid;

} lnet_process_id_t;

The nid identifies the id of the node, and pid identifies the process on the node.
For example, in the case of socket LND (and for all currently existing LNET LNDs),
there is only one instance of LNET running in the kernel space; the process id therefore
uses a reserved ID (12345) to identify itself.
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ME: Matching Entry

A portal is composed of a list of match entries (ME). Each ME can be associated with
a buffer, which is described by a memory descriptor (MD). ME itself defines match
bits and ignore bits, which are 64-bit identifiers that are used to decide if the incoming
message can use the associated buffer space. Figure 9.1 illustrates the Lustre LNET
addressing scheme.

typedef struct lnet_me {
struct list_head me_list;
lnet_libhandle_t me_lh;
lnet_process_id_t me_match_id;
unsigned int me_portal;
__u64 me_match_bits;
__u64 me_ignore_bits;
lnet_unlink_t me_unlink;
struct lnet_libmd *me_md;

} lnet_me_t;

All MEs associated with the portal are linked by the me_list. The me_match_id
defines which remote LNET peer(s) are allowed to access this ME, and it can be a
wildcard that allows open access.

MD: Memory Descriptor

Following the creation of an MD by the upper layer, the LNET layer uses the struct lnet_

md_t to reference the MD. The LNET internal representation is described by struct lnet_

libmd_t. Per our understanding, the purpose is to make lnet_libmd_t opaque to
the client so that they cannot interfere with LNET internal states. They share some of
the common fields, but LNET maintains more states for internal housekeeping.

typedef struct {
void *start;
unsigned int length;
int threshold;
int max_size;
unsigned int options;
void *user_ptr;
lnet_handle_eq_t eq_handle;

} lnet_md_t;

If a memory buffer described by MD is contiguous, then the address of start
points to the begining of the memory. Otherwise, it points to the start of some I/O
vectors. There can be two kinds of I/O vectors: if the memory is already mapped
to virtual memory, it is described by struct iovec; otherwise, it is described by
lnet_kiov_t, which may or may not be mapped to virtual memory, and by definition,
it is just a memory page. MD options (options) identifies the type of I/O vectors. It
is either LNET_MD_IOVEC or LNET_MD_KIOV. Also, if the MD is describing a non-
contiguous memory, length then describes the number of entries in the array.

As mentioned above, struct lnet_libmd_t is used by LNET internal to de-
scribe the MD along with some other bookkeeping fields:

typedef struct lnet_libmd {
struct list_head md_list;
lnet_libhandle_t md_lh;
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lnet_me_t *md_me;
unsigned int md_length;
unsigned int md_offset;
unsigned int md_niov;
union {

struct iovec iov[LNET_MAX_IOV];
lnet_kiov_t kiov[LNET_MAX_IOV];

} md_iov;
...

}

It should be obvious that md_me is the address of the ME entry this MD is associated
with, and it can be NULL. The md_length is the total number of bytes of all segments
this MD describes, and md_offset is the number of bytes to skip. For a noncontiguous
memory, think of it as all being combined into a virtual contiguous array and you have
a logical offset into it. The md_niov is the number of valid entries of the I/O vectors
described by either iov or kiov in the union struct. md_list is a hashtable with
handle (md_lh) as key to locate an MD.

Example Use of Offset

Upon initialization, the server will post request buffers (for the request portal); the
buffer is to accommodate incoming client requests. We further assume that the request
buffer is 4KB in size and each request should be 1KB at most. When the first message
comes, the offset is increased to 1KB, and with the second message, the offset is set to
2KB and so on. So essentially, the offset is used to keep track of the write position to
fend off an overwrite, and this is the default case. Another case where offset is being
used differently will be described after we talk about MD options.

MD Options

If the MD has the LNET_MD_MANAGE_REMOTE flag set, then the client can indicate the
offset into the MD for the GET or PUT operations. In the follow-on API discussion,
we describe the offset parameter in the GET and PUT API. We describe two use cases
here:

• The router posts a buffer containing the nids for interested clients to read, with
LNET_MD_MANAGE_REMOTE and LNET_MD_OP_GET flags set. All clients will get
the buffer with offset as zero since they will get a complete list of nids on the
router.

• For the case of an early server reply when adaptive timeout is in use, the client
posts one reply buffer before sending out the request. The server first responds
with an early reply with the offset set to zero. This means “I got your request,
now wait patiently.” Later, the server sends the actual reply to the same buffer
with the proper offset.

Another type of attribute associated with the MD defines the operations allowed on
the MD. For example, if the MD only has a get flag LNET_MD_OP_GET, then writing
into this MD is not allowed. This is equivalent to the read-only case. And LNET_MD_
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OP_PUT means the MD only allows for a PUT operation, but without the GET flags, it
becomes a write-only.

There are two flags dealing with the case where an incoming message is bigger
than the current MD buffer. The LNET_MD_TRUNCATE allows a save but truncates the
message. This is useful when the client does not care about the content of the reply.
As an example, let’s assume a client pings the router to see if it is alive. The router
replies with a list of its nids. The client does not care about the contents and does not
interpret those nids, so a small buffer with a truncate flag is just fine. The second flag is
LNET_MD_MAX_SIZE, which tells LNET to drop the message if the incoming message
is beyond the allowed size.

Event Queue

Each MD has an event queue to which events are delivered. Each event queue can use
callbacks or it can be polled.

9.2 Portal RPC: A Client of LNET

Portal RPC by design has multiple portals for each service defined, and these are re-
quest, reply, and bulk portals. We use an example to illustrate the point. Say a client
wants to read ten blocks of data from the server. It first sends an RPC request to the
server telling that it wants to read ten blocks and it is prepared for the bulk transfer
(meaning the bulk buffer is ready). Then, the server initiates the bulk transfer. When
the server has completed the transfer, it notifies the client by sending a reply. Looking
at this data flow, it is clear that the client needs to prepare two buffers: one is associated
with bulk Portal for bulk RPC, the other one is associated with reply Portal.

This is just how Lustre makes use of Portal RPC. It uses two portals in the above
scenario because Portal RPC uses the same ME match bits for both. However, it is fine
to have two buffers posted using the same portal as long as their ME matching bits are
different.

Get and Put Confusion

• Most of the time, a client issues LNetPut to request something from the server or
to request that something be sent to the server. Then the server will use LNetPut
to send a reply back to the client or LNetGet to read something from the client
as in bulk transfer.

• The one case that a client will issue LNetGet is the router pinger; the client will
recieve a list of NIDs from a well-known server portal as a way of verifing that
the router is alive.

Router In the Middle

We will use LNET PUT as an example to explain this scenario. Let’s assume the client,
C, has some payload to send to a server S, as the final destination through a router in
the middle, R, as shown in Figure 13. LNET takes the payload and appends the PUT
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header with information such as final server NID, match bits, offset, etc. This is now
a complete LNET message. Then the LNET passes this message on to the LND layer,
along with the router NID. LND puts this message on the wire, and this message will
be transmitted to R.

The router LND layer receives this message and passes onto the router LNET layer.
Two pieces of information are needed from the PUT header in the message. One is the
size of the message so that router can allocate (or pre-allocate) space to store the incom-
ing message, noted that this space has nothing to do with the MD we discussed before,
it is just a piece of buffer. The second piece of information is the destination NID.
After the message is completely recieved, router LNET will pass this message along
with destination NID to proper LND (it can be a different LND if this is heterogeneous
routing environment) to send it on the wire.

C R S

lnet put lnet put

payload PUT header LND header

LNET supplied
(Server NID, match bits, offset)
also gives Router NID to LND

Figure 13: The illustration of LNET PUT with a router in the middle scenario.

9.2.1 Round 1: Client Server Interactions

Assume that a server wants to expose a buffer to its client; below are the steps happen-
ing on both sides, described briefly:

1. Server attaches the ME and MD and makes them part of some known portal.

2. Server makes sure that the MD option is set correctly: get-only, for remote man-
agement in this case. Now the server side is ready.

3. Client prepares the local ME and local MD for the reply if so requested.

4. Client invokes the LNET GET, with peer address, portal, match bits, etc.

5. Server receives the GET message, checks its validity (correct portal, correct
match bits, correct operation on the MD).
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6. Server invokes the callback registered on the MD to notify the upper layer. In the
case of the router ping scenario we described earlier, once the buffer is posted,
the server at the upper layer may not be interested in client requests, so this
callback could just be NULL.

7. Server sends a reply message back to the client. Note that this reply is not a
LNET PUT.

9.2.2 Round 2: More details

1. Server posts a request buffer by ptlrpc_register_rqbd(). The _rqbd is
an abbrevation for request buffer descriptor, defined by the struct ptlrpc_

request_buffer_desc. It holds enough information for creating the ME and
MD. Since this is a server buffer that is to serve the request, the matching id, as
well as all important ME, MD creation is as follows:

struct ptlrpc_service *service = rqbd->rqbd->rqbd_service;
static lnet_process_id_t match_id = {LNET_NID_ANY, LNET_PID_ANY};
rc = LNetMEAttach(service->srv_req_portal, match_id, 0, ˜0,

LNET_UNLINK,LNET_INS_AFTER, &me_h);
rc = LNetMDAttach(me_h, md, LNET_UNLINK, &rqbd->rqbd_md_h);

LNET_UNLINK indicates this ME should be unlinked when the MD associated
with it is unlinked, and LNET_INS_AFTER means that the new ME should be
appended to the existing list of MEs. The me_h and md are defined as lnet_
handle_me_t and lnet_md_t, respectively.

2. Client sends an RPC by ptl_send_rpc(), and this function takes struct ptlrpc_

request *request as an input parameter and may perform the following op-
erations:

• Client posts bulk buffer by ptlrpc_register_bulk(). This is performed
when the bulk buffer is not NULL in the reqeust:

if (request->rq_bulk != NULL) {
rc = ptlrpc_register_bulk(request);
...

• Client posts reply buffer by LNetMEAttach() and LNetMDAttach().
This operation is performed when a reply is expected (the input parame-
ter noreply is set to 0).

• Client sends request:
rc = ptl_send_buf(&request->rq_req_md_h,

request->rq_reqmsg, request->rq_reqlen,
LNET_NOACK_REQ, &request->rq_req_cbid,
connection,
request->rq_request_portal,
request->rq_xid, 0);

3. Server handles incoming RPC by request_in_callback() defined in events.
c. This can incur two further actions:

• bulk transfer: ptlrpc_start_bulk_transfer(),
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• send reply: ptlrpc_reply().

4. Once the bulk transfer has been written, read, or replied to, there could be
more callback invoked such as client_bulk_callback() and reply_in_

callback().

9.3 LNET API

Naming Conventions

Function names starting with LNet are external APIs for the upper layers. All other
functions using lower cases are internal to LNET. Within LNET, LND has two sets of
APIs. If it starts with lnd, then it is the API for LNET layer to call down or if it starts
with lnet, then it is for LND to call up into LNET, as illustrated in the figure below.
Note that it is confusing to use LNET to describe both as the whole network subsystem
and as a particular layer paramount to LND, but that seems the way it is being used.

LNET compiles for both kernel space and user space. If a file is prefixed with
liblnet, it is meant for user space; otherwise, it is for kernel space. Files under
lnet/lnet are compiled twice, and those under lnet/klnds and lnet/ulnds are com-
piled only once.

LNetPut LNetGet
| |

+--------------------+
| LNET |
+--------------------+
| | | |
| v v |
| lnd_send lnd_recv|
| |
| LND |
+--------------------+

Initialization and Teardown

int LNetInit(void) and int LNetFini(void) are two APIs for setting up and
tearing down LNET connections.

Memory-Oriented Communication Semantics

The following API has been annotated with comments:

int LNetGet(
lnet_nid_t self,
lnet_handle_md_t md_in, /* local MD to hold requested data */
lnet_process_id_t target_in, /* target process id */
unsigned int portal_in, /* target portal index */
__u64 match_bits_in,/* match bits used on target process */
unsigned int offset_in); /* offset into remote MD */

This function initiates the remote read operation. Note that offset_in is only
used when a target memory descriptor has the LNET_MD_MANAGE_REMOTE flag set. It
is the same for the PUT operation.
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int LNetPut(
lnet_nid_t self,
lnet_handle_md_t md_in, /* local MD holding data to be sent */
lnet_ack_req_t ack_req_in, /* flag to request Ack event */
lnet_process_id_t target_in, /* target process id */
unsigned int portal_in, /* target portal index */
__u64 match_bits_in,/* match bits for target process */
unsigned int offset_in, /* offset into remote MD */
__u64 hdr_data_in); /* 64-bit user data */

This function sends data asynchronously. The self specifies the source NID to use
and hence the outgoing NI (network interface). If LNET_NID_ANY is given, LNet will
choose source NID and NI by itself, based on destination NID and routing table. Note
that acknowledgments are sent only when they are requested by the initiating process
and the local MD has event queue and remote MD enables them.

Match Entry Management

int
LNetMEAttach(unsigned int portal,

lnet_process_id_t match_id,
__u64 match_bits, __u64 ignore_bits,
lnet_unlink_t unlink, lnet_ins_pos_t pos,
lnet_handle_me_t *handle)

This function creates a new ME. The first parameter indicates which local portal
this ME should be associated with, and the next parameter indicates the remote process
id (or remote peer) allowed to access this ME. The rest are match bits and ignore bits.
Each portal RPC has a unique transaction id, so the portal RPC uses this transaction id
as the match bits for the reply. The transaction id will be sent over to the remote peer,
and the remote peer will use this transaction id as the match bits in its reply buffer. The
last parameter is an ME pointer; if the call succeeds, it returns a handler.

int LNetMDAttach(
lnet_handle_me_t meh, /* ME to be associated with */
lnet_md_t umd, /* user-visible part of the MD */
lnet_unlink_t unlink, /* if MD is unlinked when it is not active */
lnet_handle_md_t *handle)

This function is used to create an MD and attach it to an ME. An error returns if
the ME already has an MD associated with it. umd comes from LNET client (Portal
RPC or LNET self-test for now), and it specifies parameters for the to-be-created MD
object, to which a handle will be returned in the lnet_handl_md_t *handle.

int LNetMDBind(
lnet_md_t umd,
lnet_unlink_t unlink,
lnet_handle_md_t *handle)

This function creates a standalone memory descriptor, i.e., an MD that is not at-
tached to an ME.

9.4 LNET/LND Semantics and API

LNET is connectionless, asynchronous, and unreliable. However, most LNDs are reli-
able and connection-oriented such that they need to establish a connection before they
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can talk to their peers. A LNET message has a payload restriction of 1MB, and the
maximum number of segments cannot exceed 256. Furthermore, LNET does not frag-
ment or assemble fragments. It’s assumed that the upper layer never gives LNET a
bigger payload than 1MB. There are several reasons for this limitation—for example
the pre-set limit makes buffer management easier and some low-level driver has a limit
on the number of scatter-gather buffers, such as 256. Also, an upper layer such as Por-
tal RPC can fragment data more easily if buffers are posted in pages. The downside to
this limitation is that if there is ever a network technology that supports an MTU more
than 1MB, then LNET might not be able to make full use of its bandwidth. 19

LND can have multiple instances—for example, in the cases where you have more
than one IB interface. Each interface is represented by a network interface type defined
by lnet_ni_t. One of the fields defined in that structure is lnd_t—a method table
callable on this particular LND type.

9.4.1 API Summary

LND APIs are the interface between LNET and its underlying network drivers. As
mentioned before, there are two sets of LND APIs. The first set is what LNET expects
LNDs to implement. For example, LNET expects to call LND methods to send and
receive messages.

• lnd_startup(), lnd_shutdown(): These functions are called per interface,
whenever LNET wants to bring up or shut down the interfaces.

• lnd_notify(): This is optional.

• lnd_accept(): This is optional.

• lnd_send(), lnd_recv(), lnd_eager_recv(): Sends outgoing messages
and receives incoming messages.

• lnd_ctl(): This call is optional. It passes user space ioctl commands to
LND. LNET supports many ioctls through a special device file; some are directly
handled by LNET (for example, adding a route) and others must be passed onto
LND to handle.

The other set of APIs are LNET functions exported for LNDs to use:

• lnet_register_lnd() and lnet_unregister_lnd(): Each LND driver
calls this function to register a new LND type.

• lnet_notify(): If a peer goes down, this function is called to notify LNET.

• lnet_parse(): For each new message received, LND calls this function to let
LNET know that a message has just arrived, so that LNET can parse the message
and check into it.

19MTU is used for allocating the network bandwidth fairly. For example, bigger MTU values might cause
a malicious client to consume the network bandwidth unfairly, while other clients might be starving.
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• lnet_finalize(): This is called by LND on both incoming and outgoing
messages. When a message is sent, this call by LND allows LNET to generate
an event to tell that the message has been sent. For an incoming message, this
calls indicates the payload of the incoming message that has been completely
received.

9.5 LNET Startup and Data Transfer

Brief notes on LNET code organizations:

lnet/ulnds /* LND in user space, */
lnet/klnds /* LND in kernel space */
lnet/lnet /* LNET layer */

Apparently, there is not much code sharing between the kernel LND and the user
space LND. Only Portals network and TCP network have an user space LND for that
reason. In the kernel space, ptllnd 20, o2iblnd, and socklnd are probably the most
important ones to know.

9.5.1 Startup

lnet_startup_lndnis() is invoked when LNET gets initialized.

1. Calls on lnet_parse_networks() to parse module parameters provided by
the user. Afterwards, LNET gets a list of network interfaces to bring up.

2. Iterates each of the interfaces acquired above. First it tries to locate the lnd
instance represented by lnd_t. Upon finding it, it invokes the lnd_startup().
We will look at each step in more detail.

3. Within the loop, it first looks for the driver by network type:

lnd = lnet_find_lnd_by_type(lnd_type);

If a driver is not found, then it could be that the driver has not been loaded yet,
so it will try to load the module and then retry to locate the driver:

rc = request_module(libcfs_lnd2modname(lnd_type));

After the driver is loaded, during its module initialization, it registers with LNET,
allowing the driver to be located later on.

4. After the driver for the network interface is located, then we can bind this driver
to the interface and invoke the driver’s startup method:

ni->ni_lnd = lnd;
rc = (lnd->lnd_startup)(ni);

Now we will explain a specific LND module, socket LND. In particular, we look
into ksocknal_startup().

20For Cray SeaStar system.
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1. If the function is being called for the first time, then it invokes ksocknal_base_
startup() to do some one-time initialization, for example, creating the data
structure shared by all interfaces.

2. Finds out which Ethernet interface to use for this network. It can be user-
specified or it can search for the first non-loopback interface in the system. Once
located, it initializes the data structure for this interface. The nid is generated by:

ni->ni_nid = LNET_MKNID(LNET_NIDNET(ni->ni->nid),
net->ksnn_interfaces[0].ksni_ipaddr);

After LNET is initialized, a user can send or receive data on this interface.

9.5.2 LNET Send

We describe the general flow of the send path, starting from LNetPut down to the LND
layer.

1. First, the LNET message descriptor is allocated, msg, defined by struct lnet_

msg_t. This message descriptor will be passed on to LND. In particular, there
is a field within defined as lnet_hdr_t msg_hdr (the message header) which
will eventually be a part of the on-the-wire message.

msg = lnet_msg_alloc();

2. LNET MD handle is converted from the incoming parameter to a real MD struc-
ture, which will hold the payload:

md = lnet_handle2md(&mdh);

3. The MD is associated with the message:

lnet_commit_md(md, msg);

4. Message details are filled in. These details can be the type of message (PUT or
GET), match bits, portal index, offset, and user-supplied data, if any.

lnet_prep_send(msg, LNET_MSG_PUT, target, 0, md->md_length);
msg->msg_hdr.msg.put.match_bits = cpu_to_le64(match_bits);
msg->msg_hdr.msg.put.ptl_index = cpu_to_le32(portal);
...

5. The event information is filled in as given below.

msg->msg_ev.type = LNET_EVENT_SEND;
msg->msg_ev.initiator.nid = LNET_NID_ANY;
msg->msg.ev.initiator.pid = the_lnet.ln_pid;
...

6. Finally, lnet send function (not LND send) is invoked as below.

rc = lnet_send(self, msg);
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7. This send function needs to locate the interface to use. If the destination is local,
then it resolves to the directly attached interface. If the destination is remote,
then it resolves the interface to a router from the routing table. The result of this
search is lp, defined by struct lnet_peer_t, representing the best choice of
a peer. This peer can be either the interface for the router or the interface for the
final destination as below.

msg->msg_txpeer = lp;

8. Next, lnet_post_send_locked() is called for credit checking. Suppose you
are only allowed to send x number of concurrent messages to the peer. If you
exceed this credit threshold, the message will be queued until more credits are
available.

9. If credit checking passed, then:

if (rc==0)
lnet_ni_send(src_ni, msg);

This send function invokes LND send for further sending:

rc = (ni->ni_lnd->lnd_send)(ni, priv, msg);

At some later point, after LND finishes sending the message, lnet_finalize()
will be called to notify the LNET layer that the message is sent. However, let’s
continue down the path of sending data. Let’s assume it is an IP network; then
socket LND send, more specifically, ksocknal_send() will be called.

10. Remember that socket LND is connection based, so when you want to send
something, first you need to locate the peer, then you have to check if a connec-
tion has been established. If there is one, you just queue the tx to the connection.

if (peer!=NULL) {
if (ksocknal_find_connectable_route_locked(peer) == NULL) {

conn = ksocknal_find_conn_locked(tx->tx_lnetmsg->msg_len, peer);
if (conn != NULL) {

ksocknal_queue_tx_locked(tx,conn);
...

}

So eventually, the message queued will be sent on the socket connection through
the kernel socket API.

11. If there is no connection yet, then we queue the message to peer first, so that
when a new connection is established, we can move the message from the peer’s
queue to the connection’s queue to be sent out.

The message format sent on the wire has the following layout, briefly:

+--------------+-----------+-----------------+-------------+-----------+
| TCP, IP, and | sock LND | LNET msg type | LNET common | payload |
| MAC header | header | specific header | header | (from MD) |
+--------------+-----------+-----------------+-------------+-----------+
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12. There are two ways (APIs) to send a message from socket LND: If the message is
small, normal send will put the message into a kernel socket buffer (each socket
has a send buffer). This is not a zero-copy transfer. Alternatively, you could
send this buffer directly onto the network without making a copy first (zero copy
transfer). However, zero-copy has its own overhead, so Lustre only utilizes this
path for large messages.

9.5.3 LNET Receive

On the receiving end, assuming that we are using socket LND, ksocknal_process_
receive() is the entry function for receiving. The general steps are given here.

1. LND starts to receive the new message. At first, it only receives up to LNET mes-
sage header because it doesn’t know where to put the payload yet, only LNET
layer has the information on the destination MD.

For this reason, LND gives LNET header to lnet_parse(). This function
LNET layer will look into the header and identify the portal, offsets, match bits,
source NID, source PID, etc. LNET can either reject the message (for example,
malformed) or accept it.

2. If proper MD is located, LNET (from lnet_parse() calls another LND API,
lnd_recv(). Now the payload from the socket kernel buffer is copied over to
the destination MD. In the case of socket LND, this is one kernel memory-to-
memory copy.

3. LNET calls lnd_eager_recv() immediately if it will call lnd_recv() some-
time later.

4. After LNET calls lnd_recv(), LND starts receiving the payload (either by
memory-to-memory copy or RDMA) and LND should call lnet_finalize()
within a finite time. LND could use RDMA for data transfer at this point if it is
available.

Also note that TCP can perform fragmentation, but when lnd_recv() finishes, it
delivers the complete message, after de-fragmenting the message.

9.5.4 The Case for RDMA

We have mentioned that there is a memory-to-memory copy in socket LND. For any
RDMA supporting network, for example, o2ib LND, it would RDMA data directly
into destination MD, therefore avoiding the memory-to-memory copy. More complete
interactions are as follows:

1. LNET PUT passes the message to o2ib LND. Now o2ib LND has two pieces of
information: An LNET message header, which holds information such as source
NID and destination NID, and an MD pointing to the actual payload.
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2. Unlike socket LND, o2ib LND only sends (using OFED API) the LNET header
over the network to the peer. The message includes an o2ib LND header, which
indicates this is an o2ib PUT request.

3. At the receiving end, o2ib LND still calls lnet_parse() as it has the LNET
header information and it identifies the MD. Then it calls lnd_recv() to re-
ceive the data. o2ib’s lnd_recv() will register the MD buffer with OFED first.
After the memory is registered, it gets an OFED memory ID, which identifies the
registered memory.

4. Now o2ib sends another message (PUT ACK) back to the initiator, along with
the remote memory ID. The initiator registers this message with its local MD
holding the payload and gets a local memory ID. Finally, it calls on RDMA write

and passes the control to OFED for further processing.

9.6 LNET Routing

General Concepts

There are two basic characteristics about Lustre routing. First, all nodes inside a Lus-
tre network can talk to each other directly without any involvement from the routing
layer. Second, Lustre routing is static routing, where its network topology is statically
configured and parsed when the system initializes. Configuration can be updated at the
runtime and the system responds to it, however, this “dynamic update” is very different
from distance vector or link state based routing as we know it.

A crude definition of a Lustre network would be a group of nodes that can com-
municate with each other directly without involvement of routing. Each Lustre network
has a unique type and number, for example, tcp0, ib0, ib1, etc., and each end node has
an NID (Network Identifier). Figure 9.6 illustrates a sample LNET routing layer stack.
Here are some artifacts of this definition: (1) It has nothing to do with IP subnet and
IP router. So if you have two networks that have an IP router in between, it can still be
considered one Lustre network. (2) If you have one end node with TCP interface and
another end node with IB interface, then you must have an LNET router in between,
and this will be considered two Lustre networks. (3) The addresses within a Lustre
network must be unique.

Another implication of the above definition is that the routing table of an end node
will have LNET router as its next hop, not the IP router. To specify a Lustre network,
you typically use one of two directives: networks or ip2nets:

# router
options lnet networks = tcp0(eth0), tcp1(eth1)
# client
options lnet networks = tcp0
# single universal modprobe.conf
options lnet ip2nets="tcp0(eth0,eth1) 192.168.0.[2,4]; tcp0 192.168.0.*; \

elan0 132.6.[1-3].[2-8/2]"
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LNET (Routing Table)

LND Driver

Kernel Socket Layer
(Kernel Routing Table)

ib0

LNET 
Router

IP 
network

IP 
network

IP Router

Figure 14: Illustration of LNET routing layer stack.

9.6.1 Asymmetric Routing Failure

This topic highlights a deficit we discovered in the current LNET production code. It is
pertinent to the general discussion on LNET, and we believe it would be good to share
our observation with a broader audience. The problem is that it can be difficult for a
router to reliably determine if an interface is down. Right now, LNET does not even
try to do it. So for a configuration where a router has two interfaces, such as tcp0 and
ib0, if the ib0 interface is down and end nodes connected with tcp0 are still pushing
data, this will result in an intermittent communication failure.

One idea towards solving this problem is that the LNET router can try to detect
the transmission problem, then temporally disable all its interfaces. A router might be
able to do this more intelligently by disabling only some interfaces if it has information
on the full topology and the incoming path that clients use. Until then, shutting down
all of its interfaces seems to be better than suffering timeout as a result of intermittent
communication failure.

9.6.2 Routing Buffer Management and Flow Control

Upon initialization, an LNET router pre-allocates a fixed number of routing buffers.
The LNET layer of an end node won’t need to do this (except when initializing its
routing tables). Allocating and managing routing buffers are the primary, if not the
only, difference between the execution logic of an end node and a router.

As routing buffers are limited resources, to prevent a single end node from over-
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whelming a router, each end node is given a quota. Once a buffer has been forwarded,
it can be recycled again. The quota for each end node is also known as buffer credit.
It is only significant for routers, and it is different from the “RPCs in flight” credit,
which is known as peer to peer credit. One RPC can involve several LNET messages
(at most ten), and these can be one request LNET message, one reply LNET message,
and in the case of a bulk transfer, there could be four LNET messages going one way,
and four LNET messages going in the opposite direction. This also implies that the
bulk transfer LNET messages are part of the bulk RPC transaction, but they are not
considered an RPC. Therefore, they (the four bulk transfer messages) are not counted
towards RPCs in flight.

There are three kinds of router buffers: 1MB (maximum amount of payload an
LNET message can carry), 4KB for small messages, and zero payload buffers for tiny
messages such as ACK.

Requests from an end node are on a first come, first served basis. If requests from
a particular end node exceed its quota, then its next request will not be handled until
the router buffer is freed, which is essentially the way LNET layer does flow control
(flow control is point-to-point). It is up to the upper layer to implement an end-to-end
flow control, for example, by number of RPCs in flight. The buffer can be freed when
the underlying LND calls the lnet_finalize() as an indication that LND considers
the forwarding done, but it doesn’t really mean the message has been put on the wire.
Depending on the size of the message, LND and kernel may have different logics for
handling it. The only requirement from LNET is, once lnet_finalize() is invoked,
LNET should be able to recycle the buffer freely.

Logically, LNET has a single queue, and incoming messages from all interfaces are
queued and processed in order. Each interface has its own interface queues; however,
that is not a concern of LNET since this is interrupt-driven. So it is guaranteed that
each incoming message is handled in the order it arrives.

9.6.3 Fine Grain Routing

This feature is a recent development (Lustre bug #15332) for Jaguar/Spider deployment
at ORNL. The motivation is that LNET doesn’t assign weights to routes. So if you have
multiple routers that reach the same destination, LNET will perform a round robin
algorithm to distribute the load, and this applies to both end node and router. What fine
grained routing adds, is simply, to assign weights to different routers, preconfigured by
the system administrator. The goal is that better routes gets more traffic. Here, better
is defined by the site system administrator.

dest network 1:
w1 (router 1, router 3)
w2 (router 4, router 5)
w3 (router 2)

So for example, you can specify different weight classes and assign routers to each
to indicate your preference. If w1 < w2, then w1 is the preferred weight class of the
two. Within a given weight class, routers are equal.

More specific to our case, this mechanism provides the potential for a client to pick
a router closer to its proximity as its preferred router.
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10 Lustre Generic Filesystem Wraper Layer: fsfilt

Lustre provides a generic wrapper layer named fsfilt to interface between the under-
lying local filesystem and Lustre. The upper layer, obd_filter, uses generic func-
tions provided by the fsfilt layer, and then fsfilt layer passes these calls into a
filesystem specific implementation. These specific implementations are interfaces to
the particular underlying filesystem. The fsfilt calls the local filesystem by using tiny
wrappers targeted for the particular filesystem (e.g., fsfilt_ext3 for ext3 filesys-
tem and fsfilt_reiserfs for Reiserfs3 filesystem). This section outlines details of
the fsfilt layer and analyzes fsfilt_ext3 as an example interface implementation.

10.1 Overview

The fsfilt framework is largely defined by the lustre/include/luste_fsfilt.
h file. In this file struct fsfilt_operations defines operations required from the
underlying filesystem. At the obd_filter registration time, the system tells what
filesystem it is built under and Lustre calls the required filesystem registration opera-
tions. This is done during the kernel module (e.g., ldiskfs, fsfilt_ext3) initial-
ization phase. Corresponding source code for each filesystem implementation is lo-
cated in lustre/lvfs. However, the fsfilt_ldfiskfs.c file will be missing with
the HEAD CVS checkout, because it is generated at build time from ldiskfs_ext3.c

(same as in other CVS branches) by taking fsfilt_ext3.c and replacing all ext3
occurrences with ldiskfs. Figure 15 shows an example implementation of the Lus-
tre fsfilt layer components for Linux and their communication paths.

Linux VFS Layer

Linux ext3 
filesystem

Linux Resierfs3 
filesystem

Lustre fsfilt_ext3 
interface

Lustre 
fsfilt_resierfs3 

interface

Lustre fsfilt 
interface for Linux

Linux ldiskfs 
filesystem

Lustre 
fsfilt_ldiskfs 

interface

Lustre obd_filter 
layer

Figure 15: An example implementation of the Lustre fsfilt layer.
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One interesting point to mention is that although in the lustre/lvfs/fsfilt.c
file there are defined symbols as below:

EXPORT_SYMBOL(fsfilt_register_ops);
EXPORT_SYMBOL(fsfilt_unregister_ops);
EXPORT_SYMBOL(fsfilt_get_ops);
EXPORT_SYMBOL(fsfilt_put_ops);

this file is not used for creating the fsfilt kernel module; in fact, there is no such
kernel module. It is linked with lvfs module to provide an API to register fsfilt
methods to access specific filesystems. The get_ops and put_ops calls allow those
who use fsfilt services to get pointers to appropriate operation tables by names and
also to get a pointer and a reference, so that it is not allowed to unload the fsfilt_

* module that is in use. When these functions are stopped being used, they release
respective pointers.

The list below shows struct fsfilt_operationsmethods defined in the lustre/
include/linux/lustre_fsfilt.h file.

struct fsfilt_operations {
struct list_head fs_list;
struct module *fs_owner;
char *fs_type;
char *(* fs_getlabel)(struct super_block *sb);
int (* fs_setlabel)(struct super_block *sb, char *label);
char *(* fs_uuid)(struct super_block *sb);
void *(* fs_start)(struct inode *inode, int op, void *desc_private,

int logs);
void *(* fs_brw_start)(int objcount, struct fsfilt_objinfo *fso,

int niocount, struct niobuf_local *nb,
void *desc_private, int logs);

int (* fs_extend)(struct inode *inode, unsigned nblocks, void *h);
int (* fs_commit)(struct inode *inode, void *handle,int force_sync);
int (* fs_commit_async)(struct inode *inode, void *handle,

void **wait_handle);
int (* fs_commit_wait)(struct inode *inode, void *handle);
int (* fs_setattr)(struct dentry *dentry, void *handle,

struct iattr *iattr, int do_trunc);
int (* fs_iocontrol)(struct inode *inode, struct file *file,

unsigned int cmd, unsigned long arg);
int (* fs_set_md)(struct inode *inode, void *handle, void *md,

int size, const char *name);
int (* fs_get_md)(struct inode *inode, void *md, int size,

const char *name);
int (* fs_send_bio)(int rw, struct inode *inode,struct kiobuf *bio);
ssize_t (* fs_readpage)(struct file *file, char *buf, size_t count,

loff_t *offset);
int (* fs_add_journal_cb)(struct obd_device *obd, __u64 last_rcvd,

void *handle, fsfilt_cb_t cb_func,
void *cb_data);

int (* fs_statfs)(struct super_block *sb, struct obd_statfs *osfs);
int (* fs_sync)(struct super_block *sb);
int (* fs_map_inode_pages)(struct inode *inode, struct page **page,

int pages, unsigned long *blocks,
int *created, int create,
struct semaphore *sem);

int (* fs_write_record)(struct file *, void *, int size, loff_t *,
int force_sync);

int (* fs_read_record)(struct file *, void *, int size, loff_t *);
int (* fs_setup)(struct super_block *sb);
int (* fs_get_op_len)(int, struct fsfilt_objinfo *, int);
int (* fs_quotacheck)(struct super_block *sb,

struct obd_quotactl *oqctl);
__u64 (* fs_get_version) (struct inode *inode);
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__u64 (* fs_set_version) (struct inode *inode, __u64 new_version);
int (* fs_quotactl)(struct super_block *sb,

struct obd_quotactl *oqctl);
int (* fs_quotainfo)(struct lustre_quota_info *lqi, int type,

int cmd);
int (* fs_qids)(struct file *file, struct inode *inode, int type,

struct list_head *list);
int (* fs_get_mblk)(struct super_block *sb, int *count,

struct inode *inode, int frags);
int (* fs_dquot)(struct lustre_dquot *dquot, int cmd);
lvfs_sbdev_type (* fs_journal_sbdev)(struct super_block *sb);

};

10.2 fsfilt for ext3

As mentioned above, Lustre provides a special fsfilt implementation for every un-
derlying local filesystem. This section explains fsfilt_ext3 implementation for the
Linux ext3 filesystem. The lustre/lvfs/fsfilt_ext3.c file is used for declaring
the fsfilt implementation for ext3. Upon build, fsfilt_ext3 is plugged into the
kernel as a module. The entry point for the module is module_init(fsfilt_ext3_
init) and the exit point is module_exit(fsfilt_ext3_exit).

static int __init *fsfilt_ext3_init(void) {}

is used for initialization at the registration time. All local filesystem specific fsfilt
implementations have this call.

Within the init function, first a cache is created by cfs_mem_cache_create()

for the callbacks for journal commits. This allows a callback to happen when a certain
journal transaction is committed. Currently, Lustre does not support any underlying
filesystems without a journal. The return value for the cache creation in the init

method is fcb_cache variable. Here, fcb denotes commit callback data.
Also in the init method, the same as any other fsfilt implementation, fsfilt_

ext3.c declares the permitted operations for that particular underlying filesystem by
providing a one-to-one mapping between the fsfilt methods and fsfilt_ext3 op-
erations through the static struct fsfilt_operations fsfilt_ext3_ops=

{} definition. Some important fsfilt_ext3 methods are explained in more detail
below.

static void *fsfilt_ext3_start()

starts the journal for metadata operations. It checks what kind of operation is called
for through the switch at the beginning of this function call. For each operation it calcu-
lates the maximum number of blocks required for that particular metadata transaction
(denoted by nblocks). For ext3, when a metadata transaction is initiated, it is re-
quired to identify how many blocks will be used for that transaction. If the requested
number of blocks is less than the available number of blocks, the filesystem will flush
some number of blocks to accommodate the requested block size. This functionality is
not required for a filesystem like ZFS.

static char *fsfilt_ext3_get_label()

gets the filesystem label, while
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static char *fsfilt_ext3_set_label()

sets the filesystem label.

static char *fsfilt_ext3_uuid()

allows fsfilt layer to query the filesystem Linux UUID.

static void *fsfilt_ext3_brw_start()

starts a journal transaction for the block I/O operation. It takes a buffer of pages as
an argument.

Flow wise, the metadata operations call *fsfilt_ext3_start() to open a jour-
nal transaction and do metadata operation, while the block I/O operations call *fsfilt_
ext3_brw_start() to open a journal transaction. However, *fsfilt_ext3_brw_

start() does not really perform the block I/O but, rather, generates a journal han-
dle for the transaction. For both operations the journal is identified by the *journal
pointer, which is of type journal_t.

Also, as can be seen in the source code, both function calls have a *handle pointer
which is of type handle_t. This is used for any operation that requires a journal
handle. This handle will be passed as an argument to its function call.

An important point to mention is that in Lustre when I/O is done to a file, the inode
is modified first and all the required blocks are allocated, then the transaction is closed
and finally the I/O is performed separately, so that the journal transaction is not kept
open for the whole duration of the actual I/O.

static int fsfilt_ext3_commit()

commits and closes the current open journal transaction. This function also has
a flag called force_sync, which signals whether the flush should be immediate.
force_sync=0means just close the transaction and do not immediately flush, whereas
force_sync=1 means close the transaction and immediately flush the memory copy.

static int fsfilt_ext3_commit_async()

also closes the transaction and returns a handle ( **wait_handle) to the caller to
be used later when actually committing the transaction.

In the true sense of these two operations, fsfilt_ext3_commit and fsfilt_

ext3_commit_async are both asynchronous. However with the availability of the force_
sync option, the fsfilt_ext3_commit operation has the possibility of synchronously
committing a given journal transaction. Most commonly, fsfilt_ext3_commit func-
tion is used whereas fsfilt_ext3_commit_async is used exclusively for the DATA
mode.

static int fsfilt_ext3_send_bio()

submits the I/O to the file. The I/O is already formed before calling this function
such that a list of buffer is created and their destination on the disk is set in the kernel.
This function is used only for file data, so there is no need to open a journal transaction
at this time. By the time this function is called, the journal transaction is already closed
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for performance reasons. The typical flow for a block I/O is discussed in Section 10.3.
This flow is followed by a fsfilt_ext3_send_bio function call for performing the
actual block I/O. For Linux 2.6 kernels all this function does is to call the submit_

bio() kernel function. The procedure is more complicated for Linux 2.4 kernels, and
it is beyond the scope of this report.

static int fsfilt_ext3_extend()

extends the journal transaction by the denoted number of blocks. The number of
extra blocks requested is denoted by the unsigned nblocks. After the extension the
transaction will still have the same handle denoted by the *handle as Lustre maintains
a single transaction visibility. This is especially useful when it is impossible to predict
how many blocks an operation will take. Examples where this functionality will be
useful are truncate or unlink operations.

static int fsfilt_ext3_setattr()

updates the inode size and attributes (user group, access mode, various file times
and file sizes).

static int fsfilt_ext3_iocontrol()

passes the iocontrol (or ioctl) parameters to the filesystem below.

static int fsfilt_ext3_set_md()

and

static int fsfilt_ext3_get_md()

are used for setting and querying the striping information. For ext3 this information
is kept in EA, and the implementation is filesystem specific.

static size_t fsfilt_ext3_readpage()

is for reading a page from the underlying file or directory. The switch at the begin-
ing of this function determines if it is a file or a directory to be read. If it is a normal
file, then it simply calls a read() kernel function to fill in the buffer with the file data
information. However, if it is a directory to be read, then it calls ext3 directory read
functions to read from the directory.

static int fsfilt_ext3_add_journal_cb()

is used for updating the in-memory representation of what is actually committed
on disk on a server from a transaction point of view. This is useful when replying to a
client with the in-memory representation of what is actually committed on disk on that
particular server for that particular client, so that the client can discard all data up to that
given transaction number to save memory. The advantage of having this functionality
is that, in case of a server crash, the data will still be in the client’s memory since the
server wouldn’t have responded back with the *cb_data yet. Here, *cb_data holds
the pointer address for the number of the last committed transaction on the disk. The
drawback is that by keeping an extra copy on the client (besides the copy on the server),
memory consumption is increased.
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int fsfilt_ext3_map_ext_inode_pages()

is the function that allocates the blocks. It is used to get information about blocks
underlying a certain block range and if they are not allocated, then it allocates them if
requested. It sends the requestor an array of pages where the blocks are placed.

static int fsfilt_ext3_write_record()

and

static int fsfilt_ext3_read_record()

are for journal update of the special LLOG (Lustre Log) file. This file is automati-
cally updated. The LLOG is required while performing an operation on multiple nodes
(e.g., unlink, which has to start on the MDS and then continue on the OSTs).

static int fsfilt_ext3_setup()

is used when the ext3 filesystem is first mounted. The obd_filter initialization
calls this function.

static int fsfilt_ext3_get_op_len()

is to get the number of blocks in the journal that a particular operation will require.
This function is obsolete and not called at all.

static __u64 fsfilt_ext3_get_version()

and

static __u64 fsfilt_ext3_set_version()

are for setting and querying the inode version. Inode version is currently not used
in the code base we have discussed so far. However, in future code bases, it will be
used for version based recovery mechanisms.

10.3 fsfilt Use Case Examples

Typical flows for metadata operations, asynchronous block I/O operations, and syn-
chronous block I/O operations can be seen in Figures 16, 17, and 18, respectively.

Figure 16 is an example of a metadata operation. This type of flow is used in Lustre
either when there is no file data or when no client is available for replying to a certain
set of metadata operations.

10.3.1 DIRECT IO in Lustre

Lustre uses DIRECT_IO for all file data I/O operations from the obd_filter to disk
and back (not cached at any point). The metadata is always journaled.

As can be seen from Figures 17 and 18, these flows guarantee that the data is
actually written to the disk before the journal transaction is committed. These flows
represent the ORDERED journal mode with DIRECT_IO. In the DATA mode, the bulk
data is written to the journal first and then after it is committed to the journal, file data
is transferred to the disk.
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Open Metadata 
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Figure 16: Fsfilt flow path for metadata operations.
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Do block I/O transfer

fsfilt_ext3_send_bio()

Figure 17: Fsfilt flow path for asynchronous block I/O operations.

10.3.2 Replaying Last Transactions After a Server Crash

As an example, let’s consider the following. Client connects and performs some oper-
ations on a Lustre server. Server replies back to the client with a commit, but at this
point the data is actually not committed to the disk. Client now has the record of the
last transaction being committed as x+y while according to the server disk, it is just x.
If the server crashes at this point, there is a conflict between the server disk and client
in terms of the last committed transaction number. Let’s further assume that following
this chain of events, the server is rebooted and the client reconnects to the server. The
server then replies back with acknowledgment and the number of the last transaction
from that client that is already committed to the server disk. For our example this
number is x. The client then replies back with x + 5 being the last transaction number
committed by that server and a list of the five last missing transactions to be performed
by the server.

10.3.3 Client Connect/Disconnect

Another use case example for fsfilt_ext3_commit with force_sync = 1 in
Lustre would be the client connect/disconnect case. Each Lustre server maintains a
separate table of client connect/disconnect operations. This table is kept on a separate
file on each server and is journaled. When a client connects, it is written to a separate
file and this file is fully journaled. To maintain this file, fsfilt_ext3_commit is
used and the force_sync flag is set to 1, as there would be no client to reply after a
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Figure 18: Fsfilt flow path for synchronous block I/O operations.

replay if the client is already disconnected.

10.3.4 Why ls Is Expensive on Lustre

As an example let’s consider the ls operation on an ext3 based Lustre filesystem which
is actually performed using the fsfilt_ext3_readpage behind the scenes. From the
client perspective, it connects to the MDS and gets the content and inode number for
that particular directory it is interested in. Based on the content information, the client
then sends stats requests for each file in that directory back to the MDS. The MDS
will reply back with striping information for each stat request (as well as with other
pertinent file metadata per request). All of these are completed in separate RPCs. If,
for example, there are three files in that given directory, by the end of this step, the
client would have sent five separate RPCs to the MDS (dir open, readdir, and stats for
every file). (In fact, regular ls does not need the file mode during ls, but most Linux
distributions are now delivered with “color ls” that wants to output file information
in color depending on file type, so it does a stat() call for every file.) Following
this step, if the client is interested in file size data, as an example, it has to query all
the OSTs that were listed in the stat information by sending glimpse RPCs. This step
has to be repeated for every file separately. Again, as an example, if each of those
three files are striped over 100 OSTs, by the end of this step, client would have sent
3 +(3× 100), or in other words, 305 RPCs. This is true not only for the ls -l but
also for the regular ls case, such that it needs to find the file mode.

11 Lustre Disk Filesystem: ldiskfs

The ldiskfs (also sometimes wrongly dubbed the Linux ext4 filesystem) is a heavily
patched version of the Linux ext3 filesystem and is developed and maintained by Sun
Microsystems. ldiskfs is a superset of Linux ext3 and ext4 filesystems. Currently, it is
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only used by Lustre on servers as an underlying local filesystem. This section provides
a brief overview of ldiskfs and its differences from the ext3 filesystem.

The main differences between the ext3 and ldiskfs filesystems in terms of their
respective I/O paths are listed here.

• In ldiskfs, allocation/block lookup is done up front with inode lock held, but
then inode lock is dropped while the I/O is being submitted to disk. This greatly
improves I/O concurrency because inode is locked for only a short time.

• In ldiskfs, allocation is done for the entire RPC (1MB, or in other words, 256×4KB
blocks) at one time, instead of 4KB block-at-a-time like VFS does. This avoids
lots of overhead in repeated bitmap searching and also allows more efficient ex-
tent finding.

• In ldiskfs, writes are currently fully synchronous to the client (no reply until data
and metadata are on disk), but this is changing. The newly developed “async
commit” patch will reply to client after data is on disk, but before metadata is
committed in any transaction. Also, the new ROC (1.8) will put write pages into
cache before flushing them to disk, in preparation for a fully asynchronous write
cache on the OSS.

• In ldiskfs, currently journal flush is forced after every write RPC.

In ldiskfs, as with any other underlying local filesystem to be used by the Lustre
servers, the policies listed here can affect the I/O path.

• Client-controlled RPCs in flight, RPC size and cached dirty data per OST. RPC
size is preferred to be a multiple of the underlying RAID stripe size to avoid read-
modify-write operations. Also, RPC size×numo f RPCsin f light×numo f clients
should take into account the bandwidth of the link and bandwidth of underlying
block devices to avoid big latency and requests piling up at contention points.

• Server-controlled number of I/O threads. This currently limits the amount of I/O
to backend devices in total at any given time.

• Striping policy. It determines how many OSTs participate in I/O to a given file.

11.1 Kernel Patches

The ldiskfs and Lustre require a set of Linux kernel patches that not only adds new
features on top of ext3 but also improves the performance. The following list provides
the essential set of kernel patches for ldiskfs, although some might not be needed for
certain use cases (e.g. sd_iostats).

• jbd-2.6.10-jcberr.patch: journal callback patch that allows replying to
clients with the last_committed when data is committed at least to the journal.
This also means that the data is recoverable by the local filesystem without the
client support.
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• jbd-stats-2.6-sles10.patch: provides statistics about transaction size,
time, etc.

• iopen-misc-2.6.12.patch: allows open-by-inode for getattr-by-fid
and recovery.

• dev_read_only-2.6-fc5.patch: discards writes to block devices for testing
and failback of OST/MDT without blocking on in-flight I/O.

• sd_iostats-2.6-rhel5.patch: provides optional SCSI device statistics.

• blkdev_tunables-2.6-sles10.patch: allows submitting larger I/Os through
the block layer.

• i_filter_data.patch: allows hooking MDS/OSS data from the in-memory
inode.

• quota-fix-oops-in-invalidate_dquots.patch: fixes bug in upstream
kernel quota code. This is fixed in the 2.6.17 kernel.

• jbd-journal-chksum-2.6-sles10.patch: provides journal transaction check-
sums to detect on-disk corruption.

11.2 Patches: ext3 to ldiskfs

Besides the patches listed above, ldiskfs requires a number of patches on top of the
ext3 source base for increased performance and functionality. The following list shows
the patches required for a ldiskfs filesystem.

• ext3-wantedi-2.6-rhel4.patch: allows creating specific inodes by num-
ber and is used for recovery. Suppose the client did an open/create and got a reply
from the server with a specific inode number. Let’s assume the server crashes at
this point but the creation is not reflected to disk yet, so the information is lost.
After the server comes back up and enters recovery, the client connects back and
sends its open/create request back again, specifying the earlier communicated
inode number from the server. In Lustre 2.0 this will not be needed, as there
will be a different set of Lustre inode numbers than the actual respective inode
numbers on disk. On servers a functionality for mapping Lustre inode numbers
to actual on disk inode numbers will eliminate the dependency on this patch.

• iopen-2.6-fc5.patch: allows lookup inodes by number. Typically, one
needs the full path to look up a file, but Lustre does not have this functional-
ity in its protocol. When one does a lookup, it only has the parent inode number
and child name, and normally this is enough. But if Lustre is in recovery mode,
all previous lookup steps are lost and Lustre needs a method to find the parent
inode number. This patch provides this functionality. This problem does not oc-
cur in ext3 because the filesystem is local, and at the time of a crash, everything
goes down, and at the time of recovery (or reboot), all the look up functionality
starts from the root directory.
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• ext3-map_inode_page-2.6-suse.patch: allocates data blocks for bulk read/write
operations for later submission for I/O. This patch creates an API that can be
used to map inode_page function in the Lustre fsfilt layer. Lustre needs
this patch because it allocates blocks ahead of time to enhance the metadata per-
formance.

The next five patches can be grouped together as they provide extent format ca-
pability on top of the ext3 filesystem. They are also used in the Linux ext4 filesystem.
The ext3 filesystem address files in blocks, and every block has a 4 byte record in inode
with the block number where the actual data for this block is stored. For long files, this
results in storing lots of block information in the inode, which is not very efficient.
The extent concept defines a range of blocks to be used as a single entity in block
allocation for large files. The maximum for a range of blocks in an extent is 128MB.
This is due to the fact that for every 128MB there is a block holding the bitmap of
the next 128MB of allocation. The only exception for this is files with holes, where
a hole, no matter how big it is, can be represented with a single extent. For a very
large file in Lustre with the following set of patches, one will have a list of extents,
with each extent being 128MB less 4KB for the bitmap mapping for that particular
128MB extent group. The extent concepts improves the performance such that, not
only at the time of allocating but, for example, when unlinking a file, one only needs
to provide the block information defining the extent for that particular file.

• ext3-extents-2.6.16-sles10.patch:

• ext3-extents-fixes-2.6.9-rhel4.patch:

• ext3-extents-multiblock-directio-2.6.9-rhel4.patch:

• ext3-extents-search-2.6.9-rhel4.patch:

• ext3-extents-sanity-checks.patch:

Next two patches provide a multi-block ( mballoc) allocator to the ldiskfs filesys-
tem. They are also used in the Linux ext4 filesystem. Just to clarify at this point,
extent and mballoc allocations are orthogonal to each other. When allocating an extent
a contiguous set of blocks is allocated. Let’s assume the first block in this extent al-
location starts from x and the last block is x + y. The next extent to be allocated for
the same file might or might not start from x+ y+1, but in any case, this new extent

will be allocated to a new set of contiguous blocks. This way, while addressing these
two perhaps disjoint sets of blocks on disk, we only need to provide their extent in-
formation instead of addresing them block by block. mballoc, on the other hand, is a
way to allocate the requested amount of (hopefully contiguous) blocks with one call.

• ext3-mballoc3-core.patch:

• ext3-mballoc3-sles10.patch:
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• ext3-nlinks-2.6.9.patch: allows more than 32,000 subdirectories to be
created in a given directory. This is achieved by setting i_nlink to 1 if over-
flowed (if number of subdirectories is greater than 32,000, addressed by a 15
bit i_nlink counter) (also used in the Linux ext4 filesystem).

• ext3-ialloc-2.6.patch: changes the inode allocation policy for OSTs to
avoid full groups (i.e., to skip full groups). There is a bitmap at the beginning
of each inode group to show which group is fully used, which group is partially
used, and which group is free. The superblock contains information about how
many inodes are free in different inode groups. This patch gives information
about an inode group, whether there are any free inodes in that group or not,
without making a full inode group scan.

• ext3-disable-write-bar-by-default-2.6-sles10.patch: turns off write
barriers in a journal which cause cache flushes.

• ext3-uninit-2.6-sles10.patch: provides identifying uninitialized block
groups for increasing the e2fsck performance (also used in the Linux ext4 filesys-
tem).

• ext3-nanosecond-2.6-sles10.patch: provides nanosecond resolution times-
tamps for inodes (also used in the Linux ext4 filesystem).

• ext3-inode-version-2.6-sles10.patch: provides inode version on disk
for version based recovery (also used in the Linux ext4 filesystem).

• ext3-mmp-2.6-sles10.patch: provides multi-mount protection to avoid dou-
ble mount in Linux High-Avaliabilty (HA) environment.

• ext3-fiemap-2.6-sles10.patch: provides file extent mapping API (effi-
cient fragmentation reporting) (also used in the Linux ext4 filesystem).

• ext3-statfs-2.6-sles10.patch: provides statfs speedup by just gather-
ing info from superblock without diving deeper (also used in Linux ext4 filesys-
tem).

• ext3-block-bitmap-validation-2.6-sles10.patch: verifies bitmaps
on disk are sane to avoid cascading corruption (also used in the Linux ext4
filesystem).

• ext3-get-raid-stripe-from-sb.patch: stores RAID layout in ext3 su-
perblock to optimize allocation (used by allocator and the information is written
by mkfs) (also used in the Linux ext4 filesystem).

12 Future Work

Lustre was initiated and funded, almost a decade ago, by the U.S. Department of En-
ergy (DOE) Office of Science and National Nuclear Security Administration (NNSA)

UNDERSTANDING LUSTRE INTERNALS



12 FUTURE WORK 76

Laboratories to address the need for an open source, highly scalable, high-performance
parallel filesystem on then-present and future supercomputing platforms. Throughout
the last decade, while satisfying the scalability and performance requirements of the
various supercomputing platforms deployed not only by DOE Laboratories but also by
other domestic and international industry and research institutes, Lustre has become
increasingly large and complex. This report only scratches the surface of the current
1.6 version of the Lustre source code base. Because Lustre is a moving target, keep-
ing documentation up to date to address day-to-day user problems and to help meet
future requirements will require a substantial effort. Limited by time and resources the
authors did not include the following topics that merit documentation:

• This documentation is based on Lustre code base b1.6 as the reference imple-
mentation. However, significant changes occurred on the b1.8 branch and the
upcoming 2.0 release. Any future effort should take this into consideration.

• Failure recovery has been a constant theme for many bug fixes and new Lustre
feature development. It also has a direct bearing on providing insight on the
Lustre diagnosis we do on a daily basis. Though we touch on it in this report,
it would be desirable to provide a holistic view on the subject from the Lustre
kernel support perspective.

• Lustre scalability is another topic in which we have a vested interest. A cen-
tralized discussion on its kernel support, status, limits, and recent bug fixes and
feature enhancement would be highly beneficial.

• Quota support was also left out of this report. A detailed analysis of this subject
in future updates will be benefical for both the Lustre developers and the user
community.

• Security (e.g., Kerberos, in terms of computer network authentication) will soon
be a default requirement for Lustre. Coverage of this topic in future updates
would provide a more complete picture of Lustre.

The authors have shared their insights and understanding of Lustre as it stands to-
day. The documentation on Lustre filesystem internals may never be complete because
of the ever-changing nature of the Lustre source code base. It is the authors’ hope that
the Lustre community will make a collective effort to continue this work.
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