
Copyright 2014 FUJITSU LIMITED

Fujitsu’s Contribution to the
Lustre Community

Sep.24 2014
Kenichiro Sakai, Shinji Sumimoto
Fujitsu Limited, a member of OpenSFS

Lustre Developer Summit 2014

Outline of This Talk

 Fujitsu’s Development and Contribution Policies
 Fujitsu’s Lustre Contribution Policy

 Contribution plan

 Roadmap

 Introduction of Contribution Features
 IB Multi-Rail

 Automated evict recovery

 Directory Quota

 Improving single process I/O performance

 Client QoS

 Challenges Toward Exascale Era
 Concerns for exascale file system

Copyright 2014 FUJITSU LIMITED 1

Fujitsu’s Development and
Contribution Policies

Copyright 2014 FUJITSU LIMITED

 Fujitsu’s Lustre Contribution Policy
 Contribution plan
 Roadmap

2

Fujitsu’s Lustre Contribution Policy

 Fujitsu will open its development plan and feed back it’s
enhancement to Lustre community
 LAD is the most suitable place to present and discuss.

 Fujitsu’s basic contribution policy:
 Opening development plan

 Feeding back its enhancement to Lustre community
 no later than after a certain period when our product is shipped.

Copyright 2014 FUJITSU LIMITED

Enhancement Enhancement

Lustre Development

Product Shipment

Enhancement

Lustre Development

Feed
back

Fujitsu Customers

Release

Contribution
 & Production Cycle

Lustre Development OpenSFS

Fujitsu

Feed
back Dev. Plan

3

Contribution Plan

 Fujitsu’s now porting our enhancements into Lustre 2.x
 These features were implemented in FEFS based on Lustre 1.8

 They’ve been used in our customer’s HPC system, including K computer

We’ll start submitting patches for Lustre in 2015
 Lustre 2.6 bugs are found during porting → We’ll submit their patches too

Copyright 2014 FUJITSU LIMITED

Functions Submitting Schedule

IB multi-rail Jan. 2015

Automated Evict Recovery Apr. 2015

Directory Quota 2nd half of 2015

Improving Single Process I/O Performance 2nd half of 2015

Client QoS 2nd half of 2015

Server QoS TBD

Memory Usage Management TBD

Details are described in later slides
4

Roadmap

Copyright 2014 FUJITSU LIMITED

OpenSFS

Fujitsu

 Fujitsu’s development and community feedback plan
 Schedule may change by Fujitsu’s development/marketing strategy

CY2014 CY2015 CY2016

Feed-back

Lustre 2.6 2.7 2.8

- IB Multi-rail
- Evict recovery

- Directory Quota
- Single process I/O
- Client QoS

Enhancement
(TBD: Snapshot, etc.)

Porting FEFS features
into Lustre2.x

5

Introduction of Contribution
Features

Copyright 2014 FUJITSU LIMITED

 IB Multi-Rail
 Automated evict recovery
 Directory Quota
 Improving single process I/O performance
 Client QoS

6

IB Multi-Rail

 Improves LNET throughput and redundancy using multiple
InfiniBand(IB) interfaces

 Improving LNET throughput
 Using multiple IB interfaces as single Lustre NID

 LNET B/W improves in proportion to the number of IBs on single Lustre node

 Improving Redundancy
 LNET can continue communicating unless all IBs fail

MDS/OSS failover is not necessary when a single point IB failure occurrs

Copyright 2014 FUJITSU LIMITED

Client

NID=192.168.0.10@o2ib0

HCA0 ib0(192.168.0.10)

HCA1 ib1(192.168.0.11)

Server (MDS/OSS)

HCA0 ib0(192.168.0.12)

HCA1 ib1(192.168.0.13)

NID=192.168.0.12@o2ib0

Single LNET
(network=o2ib0)

7

IB Multi-Rail: Related Work (OFED level)

 IPoIB bonding
 OFED has this function already

 → RDMA isn’t supported

 RDMA bonding
 Ongoing work by Mellanox

 OFED will support RDMA bonding (I’m not sure when…)

 → Our IB multi-rail function might be unnecessary in the future

 IB partition method
Mr.Ihara (DDN) presented at LUG 2013

Multiple bond interfaces are enabled with IPoIB child interfaces

 → Requiring multiple LNET, configurations are complex

 At the moment, our approach seems to be better

Copyright 2014 FUJITSU LIMITED 8

IB Multi-Rail: Implementation

 Implemented in LND (ko2iblnd)
 Other Lustre modules are not changed

 Keep compatibility with old version of Lustre

Multiple IB HCAs are handled as single NID
 Enable constructing single LNET network

 All IBs are active
 ko2iblnd selects transmission path by round-robin order

Multiple LNET requests are transmitted by using all IB paths in parallel

Copyright 2014 FUJITSU LIMITED 9

IB Multi-Rail: How to Use

 Combining single NID width multiple IB interfaces

 LNET setting (modprobe.conf)

 NID/IPoIB definition

 Display multi-rail information

Copyright 2014 FUJITSU LIMITED

options lnet networks=o2ib0(ib0,ib1)

Client

lctl --net o2ib0 add_o2ibs 192.168.0.10@o2ib0 192.168.0.10 192.168.0.11 → Client
lctl --net o2ib0 add_o2ibs 192.168.0.12@o2ib0 192.168.0.12 192.168.0.13 → Server

NID=192.168.0.10@o2ib0

HCA0 ib0(192.168.0.10)

HCA1 ib1(192.168.0.11)

Server (MDS/OSS)

HCA0 ib0(192.168.0.12)

HCA1 ib1(192.168.0.13)

NID=192.168.0.12@o2ib0

Single LNET
(network=o2ib0)

lctl --net o2ib0 show_o2ibs
192.168.0.10@o2ib0 192.168.0.10 192.168.0.11
192.168.0.12@o2ib0 192.168.0.12 192.168.0.13

10

Node A

Node B

Node A

Node B

IB Multi-Rail: Path Selection

 Transmission path is selected in round-robin order
 Source and destination interfaces are selected cyclically when each LNET

function (LNetPut/LNetGet) is executed

Copyright 2014 FUJITSU LIMITED

ib0 ib1

ib0 ib1

1 2

Node A

Node B

ib0 ib1

ib0 ib1

1 2

ib2 ib3

3 4

ib0 ib1

ib0 ib1

1 2

ib2

3

Node A

Node B

ib0

ib0 ib1

1 2

source

destination

round-robin
 order

11

IB Multi-Rail: Error Handling
 Path error
 Ptlrpc resends the request that got an error

 → ko2iblnd selects next transmission path in round-robin order and sends it

 Port down
 ko2iblnd removes the transmission path that uses the failed port

 → No error occurs when sending the request

Copyright 2014 FUJITSU LIMITED

LND
(ko2ib)

Select
Path

Send
Data

Notify
Success

LNET

ptlrpc

FS Layer Send
Request

Send
Done

Error
Detected

Notify
Error

Send
Data

Notify
Success

Send
Request

Send
Done

Select
Path

Retry Send

Normal Case Path Error

Select
Path

Source node

Destination node

ib0 ib1

ib0 ib1

Source node

Destination node

ib0 ib1

ib0 ib1

Source node

Destination node

ib0 ib1

ib0 ib1

error

12

IB Multi-Rail: LNET Throughput

 Server
 CPU: Xeon E5520 2.27GHz x2

 IB: QDR x2 or FDR x2

 Result
 B/W almost scales by #IBs

 Achieves nearly HW performance

Copyright 2014 FUJITSU LIMITED

IB SW

(Concurrency=32)

Server

Server

IB x2

IB x2

13

o2ib0

IB SW

IB Multi-Rail: I/O Throughput of Single OSS

 OSS/Client
 CPU: Xeon E5520 2.27GHz x2

 IB: QDR x2

 OST
 ramdisk x8 (> 6GB/s)

 IOR
 32-process (8client x4)

Copyright 2014 FUJITSU LIMITED

 Result
 Throughput almost scales by #IBs

Measurement of FDR is planned

Client Client Client … x8

MDS OSS

x8
ramdisk

14

Directory Quota (DQ for short)

Manages maximum files and disk usages for each directory
 All files/subdirectories under DQ-enabled directory are under control

 Can not be set to subdirectories under DQ-enabled directory

•Because of simplicity of implementation and performance

 Implemented on top of the Lustre’s Quota framework
 UID/GID Quota can be used along with DQ

 Keep compatibility with current Lustre

•mkfs isn’t needed to upgrade PKG

•Old version of clients can access DQ-enabled directory

• DQ is not effective to the old version of clients

Copyright 2014 FUJITSU LIMITED 15

Directory Quota: How to Use

 Operations are same as Lustre’s UID/GID Quota
 Only “quotacheck” operation differs

 Set DQ on target directory (=DQ-directory)
 # lfs quotacheck –d <target dir>

•Counts the number of inodes&blocks of existing files under DQ-directory

 Set limits of inodes and blocks
 # lfs setquota –d <target dir> -B <#blk> -I <#inode> <mountpoint>

 Enable limiting by DQ
 # lctl conf_param <fsname>.quota.<ost|mdt>=<ugd>

 # lctl set_param -P <fsname>.quota.<ost|mdt>= <ugd>

 Check status
 # lctl get_param osd-*.*.quota_slave.info

Copyright 2014 FUJITSU LIMITED 16

Directory Quota: Implementation

 Existing processes of UID/GID Quota are used as far as possible
 Add some data structures that stores DQ information

 Keep compatibility with ldiskfs disk layout

 Introduce new ID for DQ (=DID)
 DID = inode number of DQ-enable directory

 DID is stored in ldiskfs inode of MDT/OST object files

 Index/account files for DQ are added
 Usages/limits of the number of inodes/blocks are managed

• index file: created at first mount

•account file: created at mkfs

• Upgrading from no DQ PKG, execute “tunefs.lustre --dirquota”

 ZFS is not supported
We don’t have plan to implement DQ in ZFS

Copyright 2014 FUJITSU LIMITED 17

Directory Quota: DQ Information

Copyright 2014 FUJITSU LIMITED

ldiskfs_inode of object file

account file for DQ

DID

ldiskfs (MDT/OST)

Super block

index file for DQ

inode# of account file

Changed for DQ

Lustre original

i_ctime_extra
i_mtime_extra

i_flags

Added for DQ

[Flag]
LDISKFS_SETDID_FL

Unused

Usage of #inodes/blocks

Limits of #inodes/blocks
Same format as UID/GID Quota

 DID is stored in unused area of ldiskfs inode
 i_ctime_extra and i_mtime_extra are used

 DQ’s index/account files are created on MDTs/OSTs

 Some flags to identify DQ are added

Client

ll_inode_info

DID (lli_did)

MDS/OSS
ldiskfs_inode_info

i_dquot[3] vfs_inode

i_dquot[2]

i_dquot[2] for DQ

DID

client_obd

cl_quota_hash[]

mdt_body

DID (mbo_did)

mbo_valid

[Flag]
OBD_MD_FLDID
OBD_MD_FLDIRQUOTA

cl_quota_hash[2] for DQ

18

Evict Recovery

 Recovers from evicted-state automatically while disabling
periodical pinging (in Lustre 2.4 or later)

 Issue
While disabling periodical pinging, clients cannot notice it’s eviction

 First I/O requset from the client to the server gets an error (EIO)

 Approach
 Reconnect automatically when an eviction occurred

 Server make evicted client send ping request to the server

 Effect
 Evicted period is shorten →Frequency of I/O error is minimized

Copyright 2014 FUJITSU LIMITED 19

Evict Recovery: Basic Mechanism

 Evict recovery process:
1. When a server evicts a client, the server notifies MGS

2. MGS notifies the evicted client to connect the server

3. The client sends ping request to the server

Copyright 2014 FUJITSU LIMITED

MDS or OSS

MGS Client

obd_name

ping
&reconnect

client’s NID
obd_name

(2)Send reconnect
 message to client

(3)Send ping
 for reconnecting

(1)Evict client

MGT MGC Handler

Target MGC

20

Evict Recovery: Sequences (W/O periodic ping)

Copyright 2014 FUJITSU LIMITED

MDS/OSS MGS

1st I/O request

Success!!

Lock cancel

Evict client

No response

Client

Additional Sequence

Ping

Evict

Connect

AFTER
WITH Automated Evict Recovery

MDS/OSS Client

Error!!

Lock cancel

Evict client

Connect

BEFORE
WITHOUT Automated Evict Recovery

No-response

Reconnected

LDLM_BL_CALLBACK

OST_CONNECT

Reconnected

OBD_PING

LDLM_BL_CALLBACK

OST_CONNECT
Client doesn’t
notice it’s evicted

1st I/O request

DISCON

CONNECTING

FULL

Client status

ti
m

e

ev
ic

te
d

ev
ic

te
d

21

Improving Single Process I/O Performance

 Important for clients to write a large amount of data such as
checkpoint files

 Issue
 Striping isn’t effective to improve single process I/O performance

•There’re some bottlenecks in Lustre’s cache method using dirty buffer for each OST

 Our Approach
write() returns immediately after copying user data to kernel buffer

 Dedicated I/O threads transfer data from the buffer to OSS/OSTs in parallel

→ write throughput dramatically improves from user perspective

Copyright 2014 FUJITSU LIMITED

User application

user buffer

write buffer

User space Kernel space

OSS/OST

OSS/OST

OSS/OST

write() copy&return

Client Servers

user buffer write() copy&return

I/O thread

22

Improving Single Process I/O Performance

 OSS/Client
 CPU: Xeon E5520 2.27GHz x2

 IB: QDR x1

 OST
 ramdisk x4

 IOR
 1-process

Copyright 2014 FUJITSU LIMITED

 Result
 Lustre 2.6.0 0.9~1.0GB/s

 Prototype 2.2~2.9GB/s

QDR IB SW

Client

MDS OSS

ramdisk

OSS

ramdisk

… x4

 Lustre 2.6.0 vs. prototype (Lustre 1.8 base)
We’re re-designing implementation suitable for Lustre 2.x

23

Client QoS (Quality of Service)

 Provides fair-share access among users on a single Lustre client

 Issue
 I/O heavy user degrades I/O performance of other users on the same node

 Approach
 Request Control: Restricts the max. number of requests issued by each user

•Prevents a single user occupies requests issued by the client

 Cache Control: Restricts the max. amount of client cache used by each user

•Prevents a single user occupies client cache and write from other users are blocked

Copyright 2014 FUJITSU LIMITED

WITHOUT QoS

Login node

User A

User B

Data

Data

Data

Client cache

Lustre
Servers

Login node

User A

User B

Client cache

Lustre
Servers

Q
oS

 fo
r

re
qu

es
t

Data

Blocked!

Data

Data

Q
oS

 fo
r

ca
ch

e

Request control
 lmv_intent_lock(), ll_file_io_generic()

WITH QoS Cache control
 osc_enter_cache_try()

24

Client QoS: How to Use

 Parameters for client QoS are specified by mount option

 Parameters for request control
 qos

•Enables request control

 {m|r|w}usermax=n (1~16)

•Maximum number of meta/read/write requests that each user can issue at the same
time

 Parameter for cache control
 qos_cache

•Enables cache control

 dpusermax=n (1~100%)

•Maximum amount of client cache(*) each user can use in the client

 *per OSC (max_dirty_mb) and per client (obd_max_dirty_pages)

Copyright 2014 FUJITSU LIMITED 25

Client QoS: Example of Effectiveness

 Test pattern
 dd if=/dev/zero of=/mnt/fefs/out.dat bs=1048576 count=2000 (write 2GB)

 User A: dd x1

 User B: dd x1~20

 Result
 Processing time of User A is kept almost constant

Copyright 2014 FUJITSU LIMITED

×Execution time
 becomes very long

○Execution time is
 almost kept constant

wusermax=2

26

Challenges Toward Exascale

File System

Copyright 2014 FUJITSU LIMITED

 I/O Throughput and Capacity
 Metadata Performance
 System Limits
 Memory Usage
 System Noise

27

Exascale Concerns: I/O Throughput&Capacity

 Concern
 Requires high throughput (~10TB/s) and huge capacity (~1EB)

•Single layered storage system won’t be able to satisfy both requirements

•Device cost, power consumption, footprint

 Approach
 Hierarchical storage system architecture

 Use appropriate storage devices in each hierarchy

Copyright 2014 FUJITSU LIMITED

Archive File System

Global File System

Local File System

Fast

Slow

Th
ro

u
g

h
pu

t

Compute Nodes
Small

Large

Ca
pa

ci
ty

28

1st layer: SSD, fast buffer for job

2nd layer: HDD, shared area (Lustre)

3rd layer: Tape, archive area (Lustre-HSM)

For example:

Exascale Concerns: Metadata Performance

 Concern
Metadata performance will hit the limit

•Exascale applications create several billions of files in a single job

•E.g. One of exascale application “NICAM” creates 1.8 billion files per job

 Approach
 Reduce metadata access to MDS

•Provide intermediate layer to absorb metadata access between compute node and
file system

•E.g. “File composition library” by RIKEN AICS manages many files as a single file

Copyright 2014 FUJITSU LIMITED

Reference: http://www.sys.aics.riken.jp/ResearchTopics/ScalableFileSystem/FileComposition.html

29

Exascale Concerns: System Limits

 Concern
 Capacity of file system must be exabytes class

•E.g. One of exascale application “COCO” outputs 860PB per job

•We’ve extended upper limits of Lustre to satisfy requirements of K computer

 Approach
 Eliminating the restriction of logical upper limits

•E.g. Eliminating 32-bit restriction, etc…

Copyright 2014 FUJITSU LIMITED

System Limits FEFS* Lustre 2.x Exa

Maximum file system size 8EB 512PB > 8EB

Maximum file size 8EB 31.25PB > 8EB

Maximum number of files 8E 4G x#MDTs

Maximum OST size 1PB 128TB > 1PB

Maximum stripe counts 20,000 2,000 > 8k

Maximum number of OSTs 20,000 8,150 > 8k

Maximum number of MDTs 1 4,096

30

Exascale Concerns: Memory Usage

 Concern
 Secure sufficient memory to application programs

•Compute node of K computer ran out of memory only by mounting file system

•We reduced memory usage drastically for K computer (2.5GB → 490MB in client)

 (reported at Lustre Developer Summit 2012)

 Approach
 Controlling memory usage strictly

•E.e. page cache

 Break away from scale dependency

•E.g. number of OSTs

Copyright 2014 FUJITSU LIMITED 31

Exascale Concerns: System Noise (OS Jitter)

 Concern
 Eliminating OS jitter to maximize performance of massively parallel

applications

•We took great effort to reduce system noise in K computer

 → Shortening execution time of Lustre daemons; ll_ping, ldlm_poold

 Approach
 Introducing dedicated cores for system daemons (OS timer, file I/O, MPI, etc)

•E.g. Fujitsu’s SPARC64 XIfx CPU for Post-FX10 provides with 2-assistant cores

• Processing cost of daemons to be reduce?

Copyright 2014 FUJITSU LIMITED 32

(Reference: Hot Chips 26)

Assistant Core

(Reported at Lustre Summit 2014)

Summary

 Fujitsu will continue to improve Lustre for exascale systems
 Take advantage of experience and technology obtained from development of

K computer and consumer supercomputers

 Fujitsu will open its development plan and feed back it’s
enhancements to Lustre community
 Luster Developer Summit is one of the most suitable place to discuss

technical matter

 Several features will be scheduled to be contributed in 2015
 InfiniBand Multi-rail, Directory Quota, etc.

Copyright 2014 FUJITSU LIMITED 33

Copyright 2014 FUJITSU LIMITED 34

