Regensburg
HPC Workshop 2009

Andreas Dilger
Sun Microsystems

microsystems

Overview

e Ext4 features

e Multi Mount Protection
e RAID tuning

e OST Pools

e File size and Glimpse
e Timeouts and Eviction

Regensburg HPC Workshop 2009

Ext4 Features

Fast extended attributes (1.4)

Extent support (1.4)

Multiple block allocator (1.4)

Uninitialized groups for faster fsck (1.6.5)
Inode versioning (VBR,1.8)

Delayed block allocation (all)

File extent map (FIEMAP, 1.8)

Nanosec timestamp (1.6.5)

Flexible Inode Placement

Larger Files (> 2TB)

Persistent file preallocation (sys_fallocate)
Larger file system (>16TB)

Regensburg HPC Workshop 2009

®Sun
Ext4 - Flexible block groups

e Can place bitmaps and inode table anywhere

e Co-locate group bitmaps and inode tables to
provide larger contiguous free spaces

e Avoid costly seeks for both data/metadata

e Allow for new allocation strategies that
exploit the new meta-data allocation

e Avoid using all group metadata (with
uninit_bg) to keep fsck times low

e Format time option only

mke2fs -0 flex bg -G nr merged groups

mkfs.lustre --mkfsoptions "-0O flex bg
-G nr merged groups"

Regensburg HPC Workshop 2009

S

Ext4 - Flexible Block Group Layout
Block Group 0 Block Group 1
T
BB|IB| IT | Free Blocks [BB|IB| IT | Free Blocks

Block Group 0 Block Group 1

BB‘BB‘IB‘IB\ IT IT ‘Free Blocks iFree Blocks

Regensburg HPC Workshop 2009

Ext4 - 16 Threads FFSB results

Op Ext4 Ext4(flex_bg) % change

read 96778 119135 18.76%
write 143744 174409 17.58%
create 1534997 1937469 18.19%
append 46735 56409 17.14%
delete 93333 113598 17.83%
Total 6514 .51 7968.24 18.24%

ooooooooooooooooooooooooo

Ext4 - e2fsck improvements

e S
e S
o C

mke2fs -0 uninit bg ... /dev/sda

KIp uninitialized bitmaps

KIp unused inodes

necksum group descriptors

SOON: support for > 16TB filesystems

tune2fs -0 uninit bg ... /dev/sda
e2fsck -fy /dev/sda

Regensburg HPC Workshop 2009

‘ fsck comparison: 50M inodes, 1T fs

1048575 XS W
o extd Read
= extd Write
: xfs Read
2 xfs Write
E -
o
o
o &
L
O
700
e £3
@ 525 exta
- s
wn 350
N
0
& 1715
0
Throughput
B = b s mE o PR PR S BE FE BE o3
. xfs

MB/s
un
o

i | | | ' | |_‘_ |__’_~_\-
0 147 294 442 589 7137 884 1031 1179
Time (seconds)

& Sun
Ext4 — Multi Mount Protection

e Important for failover devices
e Delays mount/e2fsck by ~10s seconds

mke2fs -O mmp /dev/sda
tune2fs -0 mmp /dev/sda

tune2fs -F -0 "mmp /dev/sda

LDISKFS-fs warning (device sda): Device is already
active on another node.

LDISKFS-fs warning (device sda): MMP failure info:
last u;lDdate time: 1239822128, last update node:
lin-clil, last update device: sdb

Regensburg HPC Workshop 2009 9

S

Ext4 - current state of affairs

e Available in RHEL5.3 update

e Available in SLES11

e Will be available in RHELG6

o Lustre |diskfs ported to ext4 baseline
e Used by SLES11 in 1.8.1

e Optional for RHEL5 in 1.8.1

e MMP not yet accepted upstream

Regensburg HPC Workshop 2009

S

RAID tuning for ext3/4

e Better layout for ext3/4 (ignore for flex _bqg)
e Tunes mballoc to RAID geometry
o Keep RAID stripe-width below 1MB

e.g. 64kB RAID6 6+2 (4kB blocks)

64kB/stride / 4kB/block = 16 block/stride
64kB * 6 stripes / 4kB/block = 96 blocks

mke2fs -E stride-size=16 -E stripe-width=96
tune2fs -E stripe-width=96

lctl conf param lustre.osc.max pages per rpc=192

Regensburg HPC Workshop 2009

S

OST Pools

e Named groups of OSTs
o Useful for heterogeneous storage
e Advisory OST selection only

mgs# lctl pool add lustre.slow lustre-OST[0-13]
mgs# lctl pool add lustre.fast lustre-OST[14-22]

1fs setstripe -c 2 -p fast /mnt/lustre/mydir
1fs setstripe -c 2 -p slow /mnt/lustre/yourdir

lctl get param -N lov.lustre*.pools.*
lctl get param -n lov.lustre*.pools.fast

Regensburg HPC Workshop 2009 12

@ Sun
0SS Read Cache

e Cache read/write data on OSS
e Benefits repeat reads/read-modify-write
e Can limit to smaller files (default all files)

lctl set param obdfilter.*.read cache enable=0

lctl set param
obdfilEér.*.readcache_max_filesize=32M

Regensburg HPC Workshop 2009 13

S

Recovery Improvements

* Version Based Recovery (in 1.8)
* Independent recovery stream per file
 |solate recovery domain to dependent ops

e Commit on Share (in 2.0)
« Avoid client getting any dependent state
« Avoid sync for single client operations
« Avoid sync for independent operations

 Adaptive Timeouts (in 1.8)

Regensburg HPC Workshop 2009

S

Adaptive Timeouts (AT)

e Avoid need to specify RPC timeout
e Handle different scale systems

e Handle different 10 loads

e Reduce recovery time to minimum

e Per-client negotiated timeout

e Per-service negotiated timeout
e Communicated with every RPC

Regensburg HPC Workshop 2009

S

Mechanisms - server

-Servers track the estimated RPC
completion times over a limited period
of time

*Servers report the latest RPC service
time estimate in each RPC reply, along
with actual service time for this
particular RPC

*Server sends an early reply if RPC
deadline approaches

Watchdogs adapt too

Regensburg HPC Workshop 2009

Mechanisms - client

*Clients remember server estimates
(per portal, per import)

Clients set RPC timeout based on
server estimate

*Clients include deadline information in
RPC request

°|f client receives an early reply to an
RPC, it adjusts its timeout

*Client timeout Is server estimate plus
measured network latency

Regensburg HPC Workshop 2009

AT status

-Adaptive timeout information can be read
from /proc/fs/lustre/*/timeouts files, for each
service and for each client.

*Service

«cfs2l:~# cat /proc/fs/lustre/ost/0SS/ost io/timeouts
eservice : cur 33 worst 34 (at 1193427052, 0d0h26m40s ago) 1 1 33 2

>the ost_io service on this node is currently reporting an estimate of 33
seconds. The worst RPC service time was 34s, and this happened 26
minutes ago. Finally, there is a history of service times -- there are 4
"bins" of adaptive_timeout_history/4 seconds each, and these are the
maximum RPC times that took place in each of those bins. So in the
last 150s, the max RPC time was 1, same with 150-300s, from
300-450s the worst was 33s, and from 450-600s the worst was 2s. The
current estimate is the max of the 4 bins.

Regensburg HPC Workshop 2009 18

S

AT status — con't
Client

>1l;ge times as reported by the servers are also tracked in the client
oba's:

«cfs21:~# cat /proc/fs/lustre/osc/lustre-0ST0001-osc-cel29800/timeouts
elast reply : 1193428639, 0d0hOOm00s ago

'network : cur 1 worst 2 (at 1193427053, 0dOh26m26s ago) 1 1 1 1
sportal 6 : cur 33 worst 34 (at 1193427052, 0dOh26m27s ago) 33 33 33 2
sportal 28 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 1 1 1
sportal 7 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 0 1 1
eportal 17 : cur 1 worst 1 (at 1193426177, 0d0h41m02s ago) 1 0 0 1

>In this case, RPCs to portal 6, the OST_|O_PORTAL (see
lustre/include/lustre/lustre_idl.h), shows the history of what the
ost io portal has been reporting as the service estimate

Regensburg HPC Workshop 2009 19

S

2.1: ZFS OST/IMDT Storage

Capacity

« Single filesystem 100TB+ (2° LUNs * 2°* bytes)
« Trillions of files in a single file system (2%¢ files)
« Dynamic addition of capacity/performance

Reliability and resilience

« Transaction based, copy-on-write

* Internal data redundancy (double parity, 3 copies)
« End-to-end checksum of all data/metadata

« Online integrity verification and reconstruction

Functionality

« Snapshots, filesets, compression, encryption
* Online incremental backup/replication

* Hybrid storage pools (HDD + SSD)

Regensburg HPC Workshop 2009 20

S

2.X: Imperative Recovery

Server driven notification of failover
« Server notifies client of failover completed
« Client replies immediately to server
- Avoid client waiting on RPC timeouts
- Avoid server waiting for dead clients

Can tell between slow/dead server
« No waiting for RPC timeout start recovery
« Can use external or internal notification

Regensburg HPC Workshop 2009

2.X: SMP Scalability

e Future nodes will have 100s of cores

 Need excellent SMP scaling on client/server
« Need to handle NUMA imbalances

e Remove contention on servers
« Per-CPU resources (queues, locks)
- Fine-grained locking

« Avoid cross-node memory access
*Bind requests to a specific CPU deterministically

«Client NID, object ID, parent directory

Remove contention on clients
- Parallel copy {to,from} user, checksums

Regensburg HPC Workshop 2009 22

microsyste ms

Andreas Dilger
<adilger@sun.com>

