
1

Lustre: some protocol
basics
HPC Workshop, Germany, September 2009

Johann Lombardi
Lustre Group
Sun Microsystems

2

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

2

3

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

3

4

Systems in a Lustre Cluster

Lustre Components

Clients
LOV

MDS OSS

File open, Directory Operations,

metadata, and concurrency

Recovery, file status & creation,
quota acq/rel

File I/O and file locking

5

Striping

What is striping?

• Striping stores file data evenly in multiple places
• Lustre stripes file objects

> RAID stripes extents over multiple block devices
> Lustre currently only has network RAID0 striping
> In the future there will be more Lustre network striping (mirroring)

6

Striping

Why stripes?

• Required aggregate bandwidth from one file exceeds
OST bandwidth

• A single client may need more bandwidth than one
OSS can offer
> Somewhat rare, but it happens

7

Lustre Client

Metadata Server

OSS 1

OSC
3

File open request

Write (obj 1)‏
Write (obj 2)‏

OSC
1

MDC

Linux VFS
Lustre client FS

LOV

Odd blocks, even blocks

Parallel Bandwidth

MDT

OST 1 OST 2 OST 3

File metadata
Inode A (obj1, obj2)‏

File open & write

8

LOV

OSC1 OSC2 OSC3

OST1

1
2
3

OST2

1
2

OST3

File A data

File B data

Object

• All data for a file is in one OST

• File data is simply data in the (single) object

Single Stripe File

9

• Stripe count for file A is two, for file B it is three
• Stripe size is typically 4MB, stripe size of file B is twice that of

file A
• Stripe object sizes add up to total file size

LOV

OSC1 OSC2 OSC3

OST1

1
3
5

OST2

2
4

OST3

File A data

File B data

Object

2

3 1 Each gray area is one object

Files with multiple stripes

10

LOV

OSC1 OSC2 OSC3

OST1

1
4
7

OST2

2
5

OST3

File A data

File B data

Object

3 12

3
6

• These are fully striped files
> Note that file A appears to have a hole (sparse extent)‏

> The white file is unusually striped (but this is possible)‏

• Typically this achieves maximum bandwidth to one file

9

One stripe on each OST

11

Striping

Sparse sections in files

• You can create sparse sections (hole) in 2 ways
> Seek + write
> Truncate a file to increase its size

• Filesystems and holes
> Good filesystems don't allocate blocks until a real write

happens
> Reading in a hole returns 0

• With objects
> Holes can be in any of the objects
> This happens quite naturally in N:1 application

– All N clients running to one file

12

Striping

Example

• One movie file with 6 frames
• A 6 client cluster, each rendering one frame
• Not all rendering takes equally long

OST1

1

OST2

2
5

OST3

6

OST1

1

OST2

2
5

OST3
Clients 1,2,5 done

File size 5

One hole in the file (3,4)‏

1 empty & 1 short object

Clients 1,2,5, 6 done

File size 6

One hole in the file (3,4)‏

1 sparse & 1 short object

13

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

13

14

MDS execution

• MDS executes transactions
> In parallel by multiple threads

• Two stage commit:
> Commit in memory – after this results are visible
> Commit on disk – in same order but later
> This batches the transactions

• Key recovery issue
> Lustre MDS can lose some transactions
> Clients need to replay in precisely same order

15

Request lifecycle

Client MDS

1. Request

3. Reply

5. Commit

2. Execute the request

4. Commit callback from FS

MDS FS

3a. Reply Ack

16

Client MDS interaction
• Send request
• Request is allocated a transno
• Send reply which includes transno
• Clients acknowledge reply

> Purpose: MDS knows clients has transno
• Clients keep request & reply

> Until MDS confirms a disk commit
> That's where we need commit callback
> Purpose: client can compensate for lost trans

• MDS has disk data per client
> Last executed request, last reply information

17

Commit callbacks

• Run a callback, when disk data commits
• Ability to register & run callbacks has been removed

from JBD in 2.6.10
> Added back by the jbd-jcberr* patches

• Similar mechanism needed for DMU support

18

OST Request Handling
• In 1.6

> OST waits for journal commit after each write
> Once the write rpc is acknowledged, data & metadata are

safely written to disk
> No need to repaly bulk write requests

• Async journal commit introduced in 1.8
> No longer wait for journal after each write
> Implement bulk write replay

– Roughly same scheme as for MDS requests now
> Disabled by default

– Due to some recovery issue under investigation
– lctl set_param obdfilter.*.sync_journa=0 to enable it

19

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

19

20

Problem Statement

• Lustre is distributed filesystem
• some POSIX calls change on-disk state on few

nodes
• Examples:

> unlink removes MDS and OST inodes
> setuid changes owner on MDS and OST

• need to maintain consistent state after failure

21

Maintaining Consistency: llog

• For distributed transaction commits
• Terminology

> Initiator – where the transaction is started
> Replicators – other nodes participating

• Normal operation
> Write a replay record for each replicator on the initiator
> Cancel that record after the replicators commit, in bulk

– Commit callback needed here

• Recovery
> Process the log entries on the initiator

22

Use case: unlink

MDS OST

client

llog

REINT_UNLINK => MDS
COOKIE => client

OST_DESTROY+cookie=>OST

LOG_CANCEL => MDS
recovery: READ_LLOG=>MDS

llog_add()
llog_cancel()

23

• OST commits objects destroy
> Then it’s time to cancel the MDS llog records
> Add the cookies to the llog cancel page
> … truncate the object
> Start a transaction (fsfilt_start_{log})‏
> Remove the object (filter_destroy_internal)‏
> Add the commit callback (fsfilt_add_journal_cb)‏

– CB is filter_cancel_cookies_cb
> Finish the transaction (fsfilt_finish_transno)‏

Use case: unlink (cont'd)

24

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

24

25

OSS Read Cache
• The page cache made things too slow in Linux 2.4

• Reserved memory registered for DMA can help

• In 1.6, OSS does non-cached direct IO
> Nothing ends up in the OSS page cache

• OSS page cache has been resurrected in 1.8
> For now, only for read
> Huge performance increase when reading small files back

• Two new parameters
> /proc/fs/lustre/obdfi lter/*/read_cache_enable
> /proc/fs/lustre/obdfi lter/*/writethrough_cache_enable

26

Topics

> Lustre striping
> Request lifecycle
> llog
> I/O in the OST
> ldlm

26

27

File System Backend

Lustre Distributed Lock Manager
• A lock protects a resource

> Typically, a lock protects something a client caches

• A client enqueues a lock to get it

• An enqueued lock has a client and server copy

• Servers send blocking callbacks to revoke locks

• Servers send completion callbacks to grant locks

• Processes reference granted client locks for use

• Processes de-reference client locks after use

• Clients cancel locks upon callbacks or LRU overflow

• Callbacks were called AST’s in VAX-VMS lingo

• Cancel was de-queue in VAX-VMS lingo

28

File System Backend

LDLM history
• Basic ideas are similar to VAX DLM

> You get locks on resources in a namespace
> All lock calls are asynchronous and get completions
> There are 6 lock modes with compatibility
> There are server to client callbacks for notification
> There are master locks on the “server” and client locks

• Differences
> We don’t migrate server lock data, except during failover

– LDLM is more like a collection of lock servers

> There are extensions to:
– Handle intents – interpret what the caller wants

– Handle extents – protect ranges of files

– Handle lock bits – lock parts of metadata attributes

29

File System Backend

Client Lock Usage
• DLM locks are acquired over the network

> The locks are owned by clients of the DLM
– MGC, OSC & MDC are examples

• Use of locks
> Locks are given to a particular lock client
> Processes reference the locks
> Locks can be canceled only when idle

• Differences
> Locks are not owned by processes (VAX) ‏

• Servers can take locks also

30

File System Backend

Lustre Lock Namespaces
• OST: namespace to protect object extents.

> Resources are object ids
> Extents in the object are “policy data”

• MDS: namespace to protect inodes and names
> FIDs are the resources
> Lock bits are policy data
> Intents bundle a VFS operation with its lock requests

• MGS: namespace for configuration locks
> Presently only one resource
> Protects the entire configuration data

31

I/O protocol

File I/O locks and lock callbacks

• Clients must acquire a read-lock to cache data for read
> Locks cover an optimistically large file extent
> Locks are cached on clients

• Before writing, a client obtains a write lock
• Upon concurrent access by another client

> Client locks see a callback when others want a conflicting lock
> After the revocation callback arrives, dirty data is flushed
> Cached data is removed
> Then the lock is dropped

32

I/O protocol

Client Lock Callback Handling

• Callback function is bound to lock
> upon client side lock enqueue
> RPC’s made to the client ldlm service by servers
> Handed by client lock callback thread : ldlm_cbd

• Completion callback
> When lock is granted

• Blocking callback
> Called when servers try to cancel locks in clients
> Causes cache flush

33

I/O protocol

Typical Simple Lock Sequence

Sys A: has

Lock on R
Sys B: need

Lock on R

Lock svc:

 - reply ASYNC to requestor

 - send callback to holder

 - monitor arrival of cancelSys A:

 - reply to svc

 - await that lock is inactive

 - flush dirty data,

 - remove cached data

 - cancel the lock

Sys B:

 - acquire lock on R

Blocking callback

Lock svc:

 - receive flushed dirty data

 - receive cancellation

 - send completion callback

Lock Enqueue

Completion Callback

Lock cancellation

34

I/O protocol

I/O & Locking

• Stripe locking
> Change from

– Lock all stripe extents, do all IO in parallel, unlock all

> To
– For all stripes in parallel: lock, do IO, unlock

> Holding locks from multiple servers
– Can lead to cascading aborts
– Is necessary for truncate and O_APPEND writes

• Disallow client locks under contention
> When an extent in a file sees concurrent access

– Ask the client to write through to the server
> This eliminates callback traffic and cache flushes

35

I/O protocol

File size and glimpses
• Normal case

> Only one client does IO to a file, this client knows the size

• Size of file without active IO from any client
> Currently file size derived from object sizes

> Will be on the MDS in the future (SOM) - optimal for quiescent files

• Size of a file under active IO
> Now any client with “far write lock” maybe growing the file

> A full file write lock would protect the size, but flushes all caches!
– Lustre does NOT DO THIS, unless the file is not busy

> In Lustre the OSS’s ask the clients with furthest locks for the size
– This is a glimpse callback - gives one view of file size

– A glimpse callback causes clients to cancel locks if they are not using them

> Glimpsing is the optimal method to get file size during active IO

36

I/O protocol

Configuration Lock

• The central configuration server is the MGS

• When a client fetches a log it also gets a lock
> The lock gets callbacks when the configuration changes

• Callback triggering events
> Online addition of OST devices
> Setting timeouts is global now
> Many others usage (OST pools creation, quota setup,) ‏
> More robustness fixes

37

I/O protocol

Timeouts and Eviction
• Client requests time out unless a reply is received

• Client-originated RPC timeouts will cause the client to:
> Disconnect from the affected server

> Ping, reconnect to server or failover and retry/complete operations

• Server callback RPC timeouts evict the affected client
> Reconnects to server like an evicted NFS client (not a perfect solution, but OK)

> The client will learn of eviction during its next request

> Upon eviction the client must purge its cache
– if data is dirty, this means a small amount of data loss!

> In-flight network ops will return -EIO to application

> Eviction prevents one bad client halting the whole cluster

38

Questions?
 johann@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	CFS Business today
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

