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Systems in a Lustre Cluster

Lustre Components

Clients
LOV

MDS OSS

File open, Directory Operations, 

metadata, and concurrency

Recovery, file status & creation, 
quota acq/rel

File I/O and file locking
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Striping

What is striping?

• Striping stores file data evenly in multiple places
• Lustre stripes file objects

> RAID stripes extents over multiple block devices
> Lustre currently only has network RAID0 striping
> In the future there will be more Lustre network striping (mirroring)
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Striping

Why stripes?

• Required aggregate bandwidth from one file exceeds 
OST bandwidth

• A single client may need more bandwidth than one 
OSS can offer
> Somewhat rare, but it happens
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Lustre Client

Metadata Server

OSS 1

OSC 
3

File open request

Write (obj 1)‏
Write (obj 2)‏

OSC
1

MDC

Linux VFS
Lustre client FS

LOV

Odd blocks, even blocks

Parallel Bandwidth

MDT

OST 1 OST 2 OST 3

File metadata 
Inode A (obj1, obj2)‏

File open & write
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LOV

OSC1 OSC2 OSC3

OST1

1
2
3

OST2

1
2

OST3

File A data

File B data

Object

• All data for a file is in one OST

• File data is simply data in the (single) object

Single Stripe File
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• Stripe count for file A is two, for file B it is three
• Stripe size is typically 4MB, stripe size of file B is twice that of 

file A
• Stripe object sizes add up to total file size

LOV

OSC1 OSC2 OSC3

OST1

1
3
5

OST2

2
4

OST3

File A data

File B data

Object

2

3 1 Each gray area is one object

Files with multiple stripes
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LOV

OSC1 OSC2 OSC3

OST1

1
4
7

OST2

2
5

OST3

File A data

File B data

Object

3 12

3
6

• These are fully striped files
> Note that file A appears to have a hole (sparse extent)‏

> The white file is unusually striped (but this is possible)‏

• Typically this achieves maximum bandwidth to one file

9

One stripe on each OST
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Striping

Sparse sections in files

• You can create sparse sections (hole) in 2 ways
> Seek + write
> Truncate a file to increase its size

• Filesystems and holes
> Good filesystems don't allocate blocks until a real write 

happens
> Reading in a hole returns 0

• With objects
> Holes can be in any of the objects
> This happens quite naturally in N:1 application

– All N clients running to one file
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Striping

Example

• One movie file with 6 frames
• A 6 client cluster, each rendering one frame
• Not all rendering takes equally long

OST1

1

OST2

2
5

OST3

6

OST1

1

OST2

2
5

OST3
Clients 1,2,5 done

File size 5

One hole in the file (3,4)‏

1 empty & 1 short object

Clients 1,2,5, 6 done

File size 6

One hole in the file (3,4)‏

1 sparse & 1 short object
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MDS execution

• MDS executes transactions
> In parallel by multiple threads

• Two stage commit:
> Commit in memory – after this results are visible
> Commit on disk – in same order but later
> This batches the transactions

• Key recovery issue
> Lustre MDS can lose some transactions
> Clients need to replay in precisely same order
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Request lifecycle

Client MDS

1. Request

3. Reply

5. Commit

2. Execute the request

4. Commit callback from FS

MDS FS

3a. Reply Ack
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Client MDS interaction
• Send request
• Request is allocated a transno
• Send reply which includes transno
• Clients acknowledge reply

> Purpose: MDS knows clients has transno
• Clients keep request & reply

> Until MDS confirms a disk commit
> That's where we need commit callback
> Purpose: client can compensate for lost trans

• MDS has disk data per client
> Last executed request, last reply information
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Commit callbacks

• Run a callback, when disk data commits
• Ability to register & run callbacks has been removed 

from JBD in 2.6.10
> Added back by the jbd-jcberr* patches

• Similar mechanism needed for DMU support
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OST Request Handling
• In 1.6

> OST waits for journal commit after each write
> Once the write rpc is acknowledged, data & metadata are 

safely written to disk
> No need to repaly bulk write requests

• Async journal commit introduced in 1.8
> No longer wait for journal after each write
> Implement bulk write replay

– Roughly same scheme as for MDS requests now
> Disabled by default

– Due to some recovery issue under investigation
– lctl set_param obdfilter.*.sync_journa=0 to enable it
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Problem Statement

• Lustre is distributed filesystem
• some POSIX calls change on-disk state on few 

nodes
• Examples:

> unlink removes MDS and OST inodes
> setuid changes owner on MDS and OST

• need to maintain consistent state after failure
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Maintaining Consistency: llog

• For distributed transaction commits
• Terminology

> Initiator – where the transaction is started
> Replicators – other nodes participating

• Normal operation
> Write a replay record for each replicator on the initiator
> Cancel that record after the replicators commit, in bulk

– Commit callback needed here

• Recovery
> Process the log entries on the initiator
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Use case: unlink

MDS OST

client

llog

REINT_UNLINK => MDS
COOKIE => client

OST_DESTROY+cookie=>OST

LOG_CANCEL => MDS
recovery: READ_LLOG=>MDS

llog_add()
llog_cancel()
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• OST commits objects destroy
> Then it’s time to cancel the MDS llog records
> Add the cookies to the llog cancel page
> … truncate the object
> Start a transaction (fsfilt_start_{log})‏
> Remove the object (filter_destroy_internal)‏
> Add the commit callback (fsfilt_add_journal_cb)‏

– CB is filter_cancel_cookies_cb
> Finish the transaction (fsfilt_finish_transno)‏

Use case: unlink (cont'd)
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OSS Read Cache
• The page cache made things too slow in Linux 2.4

• Reserved memory registered for DMA can help

• In 1.6, OSS does non-cached direct IO
> Nothing ends up in the OSS page cache

• OSS page cache has been resurrected in 1.8
> For now, only for read
> Huge performance increase when reading small files back

• Two new parameters
> /proc/fs/lustre/obdfi lter/*/read_cache_enable
> /proc/fs/lustre/obdfi lter/*/writethrough_cache_enable
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File System Backend

Lustre Distributed Lock Manager
• A lock protects a resource

> Typically, a lock protects something a client caches

• A client enqueues a lock to get it

• An enqueued lock has a client and server copy

• Servers send blocking callbacks to revoke locks

• Servers send completion callbacks to grant locks

• Processes reference granted client locks for use

• Processes de-reference client locks after use

• Clients cancel locks upon callbacks or LRU overflow

• Callbacks were called AST’s in VAX-VMS lingo

• Cancel was de-queue in VAX-VMS lingo
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File System Backend

LDLM history
• Basic ideas are similar to VAX DLM

> You get locks on resources in a namespace
> All lock calls are asynchronous and get completions
> There are 6 lock modes with compatibility
> There are server to client callbacks for notification
> There are master locks on the “server” and client locks

• Differences
> We don’t migrate server lock data, except during failover

– LDLM is more like a collection of lock servers

> There are extensions to:
– Handle intents – interpret what the caller wants

– Handle extents – protect ranges of files

– Handle lock bits – lock parts of metadata attributes
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File System Backend

Client Lock Usage
• DLM locks are acquired over the network

> The locks are owned by clients of the DLM
– MGC, OSC & MDC are examples

• Use of locks
> Locks are given to a particular lock client
> Processes reference the locks
> Locks can be canceled only when idle

• Differences
> Locks are not owned by processes (VAX) ‏

• Servers can take locks also
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File System Backend

Lustre Lock Namespaces
• OST: namespace to protect object extents.

> Resources are object ids
> Extents in the object are “policy data”

• MDS: namespace to protect inodes and names
> FIDs are the resources
> Lock bits are policy data
> Intents bundle a VFS operation with its lock requests

• MGS: namespace for configuration locks
> Presently only one resource
> Protects the entire configuration data
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I/O protocol

File I/O locks and lock callbacks

• Clients must acquire a read-lock to cache data for read
> Locks cover an optimistically large file extent
> Locks are cached on clients

• Before writing, a client obtains a write lock
• Upon concurrent access by another client

> Client locks see a callback when others want a conflicting lock
> After the revocation callback arrives, dirty data is flushed
> Cached data is removed
> Then the lock is dropped
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I/O protocol

Client Lock Callback Handling

• Callback function is bound to lock 
> upon client side lock enqueue
> RPC’s made to the client ldlm service by servers
> Handed by client lock callback thread : ldlm_cbd

• Completion callback
> When lock is granted

• Blocking callback
> Called when servers try to cancel locks in clients
> Causes cache flush
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I/O protocol

Typical Simple Lock Sequence

Sys A: has

Lock on R
Sys B: need

Lock on R

Lock svc:

 - reply ASYNC to requestor

 - send callback to holder

 - monitor arrival of cancelSys A:

 - reply to svc

 - await that lock is inactive

 - flush dirty data, 

 - remove cached data

 - cancel the lock

Sys B:  

 - acquire lock on R

Blocking callback

Lock svc:

 - receive flushed dirty data

 - receive cancellation

 - send completion callback

Lock Enqueue

Completion Callback

Lock cancellation
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I/O protocol

I/O & Locking

• Stripe locking
> Change from

– Lock all stripe extents, do all IO in parallel, unlock all

> To
– For all stripes in parallel: lock, do IO, unlock

> Holding locks from multiple servers
– Can lead to cascading aborts
– Is necessary for truncate and O_APPEND writes

• Disallow client locks under contention
> When an extent in a file sees concurrent access

– Ask the client to write through to the server
> This eliminates callback traffic and cache flushes
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I/O protocol

File size and glimpses
• Normal case

> Only one client does IO to a file, this client knows the size

• Size of file without active IO from any client
> Currently file size derived from object sizes

> Will be on the MDS in the future (SOM) - optimal for quiescent files

• Size of a file under active IO
> Now any client with “far write lock” maybe growing the file

> A full file write lock would protect the size, but flushes all caches!
– Lustre does NOT DO THIS, unless the file is not busy

> In Lustre the OSS’s ask the clients with furthest locks for the size
– This is a glimpse callback - gives one view of file size

– A glimpse callback causes clients to cancel locks if they are not using them

> Glimpsing is the optimal method to get file size during active IO
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I/O protocol

Configuration Lock

• The central configuration server is the MGS

• When a client fetches a log it also gets a lock
> The lock gets callbacks when the configuration changes

• Callback triggering events
> Online addition of OST devices
> Setting timeouts is global now
> Many others usage (OST pools creation, quota setup, ....) ‏
> More robustness fixes
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I/O protocol

Timeouts and Eviction
• Client requests time out unless a reply is received

• Client-originated RPC timeouts will cause the client to:
> Disconnect from the affected server

> Ping, reconnect to server or failover and retry/complete operations

• Server callback RPC timeouts evict the affected client
> Reconnects to server like an evicted NFS client (not a perfect solution, but OK)

> The client will learn of eviction during its next request

> Upon eviction the client must purge its cache
– if data is dirty, this means a small amount of data loss!

> In-flight network ops will return -EIO to application

> Eviction prevents one bad client halting the whole cluster
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Questions?
                                   johann@sun.com
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