
Take back control with
RobinHood v3

June 1st 2017

Henri Doreau <henri.doreau@cea.fr>

28 mai 2017

FROM RESEARCH TO INDUSTRY

LUG'17

CEA/DAM | LUG 2017 | 2

Project History

Robinhood Policy Engine
Mature

Development started in 2005
Constantly improved since then
Now widely used in HPC centers of various size
Large contributors base (sites, vendors...)

Open Source
Initially developed for internal needs
Open sourced in Feb. 2009 (now lives on http://github.com/cea-hpc/robinhood)

Versatile
Purgeing entries on temporary filesystems
Conductor of Lustre/HSM installations
Rich reporting and near-real time monitoring
Powerful suite of companion tools

CEA/DAM | LUG 2017 | 3

Robinhood 3 in a Nutshell

robinhood-tmpfs

robinhood
rbh-diff
rbh-report
rbh-du
rbh-find

robinhood-lhsm

rbh-lhsm
rbh-lhsm-diff
rbh-lhsm-report
rbh-lhsm-du
rbh-lhsm-find

robinood-backup

rbh-backup
rbh-backup-diff
rbh-backup-report
rbh-backup-du
rbh-backup-find
...

v2 “flavors”
and their

commands

→ A static set of available policies per flavor

V3: a single instance to
manage all “legacy” policies

...and much more!

robinhood

robinhood
rbh-diff
rbh-report
rbh-undelete
rbh-du
rbh-find

→ Policies declared
in configuration

CEA/DAM | LUG 2017 | 4

Robinhood in a Nutshell

Robinhood Policy Engine: overview
Collects information about filesystems

Maintain a up-to-date image of filesystem metadata
Lustre: based on MDT changelogs
Posix: periodic scanning

Define custom policies to schedule actions on filesystems entries
v2.x: archiving data, purging scratch filesystems, HSM...
v3+: way much more!
Flexible, fine-grained policy rules

Provides an overall view of filesystems contents
File size profile per user, per group, …
Classifying entries in arbitrary admin-defined sets (fileclasses)

A set of convenient utilities to manage Lustre filesystem contents efficiently
rbh-find, rbh-du, rbh-diff...

CEA/DAM | LUG 2017 | 5

Robinhood Policy Engine

CEA/DAM | LUG 2017 | 5/27

Robinhood Policy Engine

Big picture

Parallel scan

(once)
Robinhood

database

near real-time

DB update
Lustre v2

ChangeLogs

find and du clones

Fine-grained statistics + web UI

Mass action scheduling (policies)

Admin

rules & policies

Attribute-based alerts

Disaster recovery helpers

//
 p

ro
c
e

s
s
in

g

Generic Lustre/HSM copytool

CEA/DAM | LUG 2017 | 6

Filesystems and Databases

Respective benefits

Filesystem Database

Data
intensive
workloads

Search
& aggregate

Goals
Optimize data access

Bandwidth, data allocation
Optimize medatada access for POSIX

lookup/readdir/create/unlink

Goals
Optimize per-record access

select/insert/update
Optimize multi-criteria searches
Optimize aggregating/sorting information

lfs find . -user foo –size -1024 |
wc -l

select count(*) from ENTRIES where
user=‘foo’ and size<1024

CEA/DAM | LUG 2017 | 7

Robinhood v3 Plugin-Based Architecture

Robinhood core made
generic

Purpose-specific code moved out
of robinhood core: now dynamic
plugins loaded at run-time
All policy behaviors made
configurable
Vendors/users can write their own
plugins for specific needs

CEA/DAM | LUG 2017 | 8

Generic Policies (v3.0): Motivation

Before v3
Static set of policies, statically defined
1 mode = 1 robinhood instance = 1 set of commands
Instances can't coexist on the same filesystem

E.g. Lustre/HSM purpose
Package: robinhood-lhsm
Commands: rbh-lhsm-*
Only implements HSM-related policies (archive, release, remove)
Cannot manage other actions (delete old files, …)

Package
"migration" policy "purge“

policy
"hsm_remove"

policy
"rmdir" policy

robinhood-tmpfs
lustre/posix

- rm (old files) - rmdir, rm –rf

robinhood-backup Copy to storage
backend

- rm in storage
backend

-

robinhood-lhsm Lustre HSM archive Lustre HSM release Lustre HSM remove -

Robinhood v2.x packages and policies

CEA/DAM | LUG 2017 | 9

Generic Policies (V3.0): Overview

Robinhood v3
A single Robinhood instance for all purposes:

Robinhood core: generic policy implementation
Specific aspects:

Specified by configuration (policy templates)
Possibly as specific plugins (dynamic libraries)

Policies at will
Schedule any conceivable action
Just by writing a few lines of configuration

Package Generic policies
robinhood-lustre Fully configurable

Package Generic policies
robinhood-posix Fully configurable

Lustre filesystems:

Other filesystems:

CEA/DAM | LUG 2017 | 10

Generic Policies (V3.0): Example

Example: configurable pool migration with just a few lines of config
Declare policy

Specify rules

declare_policy move_pool {
scope { type == file and status != ok }
default_action = cmd(“lfs migrate -p {pool} -c {count} {path}”);
status_manager = basic ; # manages ok/failed status

}

move_pool_rules {

rule migr_movies {
target_fileclass = movie_types;
action_params { pool = “pool1”; count = 2; }
condition { last_mod > 6h }

}

rule migr_hpc_data {
target_fileclass = big_hpc_files;
action_params { pool = “pool2”; count = 16; }
condition { last_mod > 6h }

}
}

CEA/DAM | LUG 2017 | 11

Rbh-report: see what is going on

Examples of reports
Inode count and volume usage

File size profiles per user, per group…

Printf option to rbh-find (contributed by Cray)

Top users, top groups, top file sizes, top directories…
Changelog statistics: operations rate (create, mkdir, setattr...)

$ rbh-report –u foo* -S
user , group, type, count, spc_used, avg_size
foo1 , proj001, file, 422367, 71.01 GB, 335.54 KB
…
Total: 498230 entries, 77918785024 bytes used (72.57 GB) 00

$ rbh-find -status lhsm:released -printf "%p %Rm{lhsm.archive_id}\n"

$ rbh-report –-szprof –i|-u ‘foo*’|-g ‘bar*’

CEA/DAM | LUG 2017 | 12

Nice new features since last year

New web interface (in 3.0)

New WebUI, compatible with robinhood 3
DB schema

Modern widgets and layout

Fine-grained authentication

Compatibility with newer MySQL versions

CEA/DAM | LUG 2017 | 13

Nice new features since last year

REST interface (in 3.0)
Makes it possible to query robinhood DB through a standard protocol (HTTP)
3 possible output format:

Classic JSON (key-value) http://server/api/native/...
Datatables.js: http://server/api/data/...
GraphJS: http://server/api/graph/...

Simple and convenient query language:
> Returns usage stats about all users and status (as JSON)
http://rbh/api/native/acct/...
> Returns usage stats about a given user (as JSON)
http://rbh/api/native/acct/uid.filter/foo

Advanced querying. Example: split user's info by gid
http://rbh/api/native/acct/uid.filter/foo/gid.group

Allow querying robinhood stats from scripts, dashboards, …
E.g: take usage stats into account for job scheduling

Plugins: extending robinhood

CEA/DAM | LUG 2017 | 15

Example of plugin: “checker” (v3.0)

“Checker” policy plugin

Executes admin-defined commands and stores their output to rbh's DB
Saves OK/failed status
Manages specific attributes: last execution time and last success time
Example applications:

Detecting silent corruption: run “md5” on files at regular interval, and check the output is
unchanged.

Audit filesystem contents: run “file” utility on all files, then generate a report by file type
SELECT … GROUP BY file_output

CEA/DAM | LUG 2017 | 16

Example of plugin: “modeguard”

Community-contributed policy plugin
Enforces mode on selected entries
Maintains OK/Invalid status on entries
Two parameters: “set mask” and “clear mask”

Example applications:
Force user directories to be setgid: set_mask=02000

Remove executable bits on files: clear_mask=0111

Again: the scope of the policy is defined in the configuration

CEA/DAM | LUG 2017 | 17

Developers: how to write a policy plugin? (1/2)

Anatomy of a robinhood plugin

Plugins are Shared Object Libraries
Loaded on demand
Cached by the application
Can be included within the project or distributed separately

Expose a clearly defined interface
mod_get_name()
mod_get_version()
mod_get_{satus_manager, action, scheduler}()

CEA/DAM | LUG 2017 | 18

Developers: how to write a policy plugin? (2/2)

Exposed methods (details)

Pick a name
Define the parameters of your module
Define the status manager

Set of all possible states of an entry
How to store them in the DB (type, default value...)
A couple callbacks for rbh to operate the state machine

Define the exposed actions
Core functions of the policy
Set mode, rename file, delete directory, archive file...

See the existing ones in: http://github.com/cea-hpc/robinhood/src/modules

Development status and roadmap

CEA/DAM | LUG 2017 | 20

New in v3.1: schedulers

Problem: how to regulate the pace of actions and order them properly?

1st example: avoid overwhelming the coordinator with archive requests
No existing feedback mechanism from MDT to Robinhood

2nd example: archive into a rate-limited system
Interleave big and small files to maximise rate and throughput

Incoming
information

Pre-check
None
Cached
Auto

Full

Scheduler #1 Scheduler #2 Post-check

CEA/DAM | LUG 2017 | 21

Schedulers

Implemented as plugins

Enabled and parametrized from configuration files
Stackable
Entry handling function can decide to:

Take the entry (forward it to the next level of processing)
Skip the entry for this run
Pause the handling of new entries for a while
Stop the handling of new entries for this run
Stop and cancel in-flight entries in the other schedulers

CEA/DAM | LUG 2017 | 22

Upcoming features

Robinhood v3.1 (1H2017)

Fixes from 3.0
Schedulers

TBF rate limiting
Per run-limitations

New policy plugins
Modeguard
Deferred purges

Performance improvements
Improved GUI

CEA/DAM | LUG 2017 | 23

Robinhood v3 Roadmap

Candidate features for v3.2 (2H2017)
Asynchronous 'stat' of entries: higher ingest rate

No 'stat' performed synchronously when processing changelogs

Changelog are ingested directly to the DB (high throughput!)

Background (asynchronous) update of entry metadata in DB

Asynchronous accounting: more information, reduced impact on performance

Reduce the impact of 'accounting' on DB performance

- Can possibly be offloaded to a 2nd server

Allows implementing much more aggregated stats (track users activity, jobs activity...)

RUG 2016 | 19 SEPTEMBER 2016

Next Plans: Asynchronous Accounting

Asynchronous accounting
Goal: reduce the impact of accounting on ingest rate.
Make it possible to distribute the accounting processing and its DB.

Current DB
workflow:

Incoming
information Entries

table

Synchronous
update Accounting

table

Aggregated stats per user, group,
type, status...Entries info

Single DB engine

Incoming
information Entries

table

User
accounting

Main DB engine

Increment
queue

(lockless)

Annex DB engines

Job
accounting

Directory
accounting

Asynchronous
accounting:

Dequeue
(async) Acct

updater

CEA/DAM | LUG 2017 | 25

Lustre contributions from the robinhood project

Misc. performance and stability enhancements

New changelog distribution interface
Character device to efficiently deliver records from kernel to userland
Orders of magnitude faster than the venerable “KUC” pipe
Landed for 2.10 (LU-7659)

QoS for HSM requests on the coordinator
Reduce the impact of massive archiving campains on Lustre/HSM
Target 2.10 (LU-9482)

New LustreAPI
Work by Cray tracked by LU-5969
Optimize massive entry handling
- Avoid continuous open/close of FS root and “fid” directory for IOCTLs

CEA/DAM | LUG 2017 | 26

Getting involved

What can robinhood do for you?

Administrators
Install (or upgrade to) v3
Give us feedback on the mailing lists (robinhood-support@sf.net)
Tell us about the limitations you encounter, the features you would need

Developers
Implement new plugins and make people happy
Help experimenting with alternative DBMS
Get in touch on robinhood-devel@sf.net

Vendors
Consider the added value of solution-specific plugins

Thank you for your attention !

Questions ?

DAM Île-de-FranceCommissariat à l’énergie atomique et aux énergies alternatives
CEA / DAM Ile-de-France| Bruyères-le-Châtel - 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

