Best Practices for
Scalable Administration
of Lustre

Blake Caldwell
National Center for Computation Sciences

April 25, 2012
LUG 2012 - Austin, TX

U.S. DEPARTMENT OF

ENERGY

*_, OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

What’s different at scale?

* What we expect:
— Overhead in administering more nodes
— More frequent failures and new failure modes

* How we deal with them:
— Redundancy
— Automated monitoring and alerting
— Scalable administration tools
— Testing

Scale-out over time

* Deployments get staged/split/repurposed and entirely
new deployments come along

— Heterogeneous environment: hardware, software stacks,
infrastructure, security policies, availability and performance
requirements

* NCCS now manages 11 production Lustre filesystems

— 272 Lustre servers (198 for Widow)

— 5 Infiniband fabrics with 1458 HCAs
 Different OFED stacks

Commonality of Best Practices:
Consistency

* Ideal - single shared OS image
— Capture differences within configuration management

* Reality - different hardware, maintenance procedures
and timelines prevents this

 Choose flexible cluster management tools that support
this abstraction

— May still need custom tools

Best Practice 1:
Common Image for Lustre Servers

* GeDlI (Generic Diskless Installer) for image creation and
provisioning
— Images built from RPMs
— Combines read-only NFS mount with ramdisks
— Handles creation of host specific scripts that run before init

* Benefits

— Manage image by chroot on management server
» Package management (yum) works
— Stateless: powerman -r for a clean slate

* 7 of our filesystems share the widow image

Best Practice 2:
Configuration Management

» Configuration management continually enforces
consistency within a cluster

* Hierarchical structure for flexible shared configuration
across clusters

* Version control provides accountability, history,
workgroup coordination

Best Practice 3:
Monitoring and Alerting

* Failures scale too
— Need to be [made] aware of them

* Monitoring infrastructure needs to be extensible
— Combination of Nagios, Splunk, SEC, scripts

* Nagios customizations

— Hardware checks

* RAID controllers
* Nodes: OMSA

— Lustre health, OSTs mounted, LNET stats
— Network fabric

Best Practice 3a: Notifications for
Diagnostics

* Alerting *should* be a first diagnostic step

« Common first notifications of Lustre problems
— Lustre health check
— Multipath checks fail
— Server load high or checks timeout
— Users: “df hangs” or “a client won’t mount”

* Look at where problems slipped by without notifications
for where to improve monitoring

Best Practice 3b:
Monitor Storage Interconnect Health

 Any marginally functioning component could be
affecting Lustre, but be masked by redundancy

* Need to address:

— Monitor physical layer errors

* Lost connectivity to nodes HCAs is usually obvious, Nagios checks
to monitor link degradation

* Monitor switch uplinks as well!
« SymbolErrors make us nervous

— Monitor IB switches (spines/line cards/fans/power supplies)
just like any other network device

« Custom Nagios plugins
— Topology verification

Best Practice 4:
Event Correlation

* Event correlation from Lustre log messages is difficult
 Splunk has SEC’s functionality, but can be interactive

* Splunk alert examples:

— Storage array logs: remove transient warnings, known bugs,
and then email log

— Storage array component failures (disk/power)
— 0SS node rehoots
— Lustre: read-only targets, symptoms of open bugs

Manager | Alerts | Jobs | Logout

splunkvn arch App -

Summary Search Views . Searches & Reports . ® Help | About

Search Actions ~

“lustre_hosts™ (Lustre: OR LustreError:) NOT Skipped NOT “"failed with -2" NOT “"processing error (-2)" NOT Apr 18,2012 - u
"I0 load" | rex field=_raw "A\S+ \S+ \S+ (2<cluster>(\S+?))\d{1,} kernel: (Lustre:|LustreError:) (?
<data>.*)" | replace widow-* with widow in cluster | rex field=_raw "[*\d]+(2<nid>

[\d\.]+@(gni\d*|o\dib|ptl\d*))" | rex field=data "~(\d+:.*\(\).*?) (?<data>.*)"| transaction cluster
maxpause=18s | fields + cluster,host,data,nid

el
2 93 matching events # Create alert @ Add to dashboard |- Save search | Build report
~ Timeline: €3 zoomin) zoomout Scale: f% linear log 1 bar =1 hour
_ — [[e 8
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM
Wed Apr 18
2012

93 events from 12:00:00 AM to 5:42:42 PM on Wednesday, April 18, 2012

= tii prev lgll 2 next» | Options.. Results perpage = 50 4

Overlay: = None $

_time: cluster s host 3 nid 3 data s

4/18/12 5:42:39.000 PM widow widow-oss8c1 6282@gni ### lock callback timer expired after 375s: evicting client at 6282@gni ns: filter-widow2-

4/18/12 5:41:58.000 PM widow widow-mds3 3506@gni ### lock callback timer expired after 376s: evicting client at 3506@gni ns: mds-widow3-

4/18M12 5:41:33.000 PM widow widow-mds2 3493@gni ### lock callback timer expired after 600s: evicting client at 3483@gni ns: mds-widow2-
widow-0ss13c2 ### lock on destroyed export fiff810e77686200 ns: mds-widow2-MDT0000_UUID lock:
widow-oss5a4 @@@ processing error (-107) req@ffif8 1008eeaa000 x139914547976942010 0400->«
widow-0ss5b2 @@@ processing error (-107) req@ffff8100b048a000 x139914547871730110 0400->«
widow-0ss5¢3 @@@ processing error (-107) req@ffif8 100bce26400 x13991454787 1040810 0400-><
widow-oss6a3 @@@ processing error (-107) req@ffif810185d61c00 x139914548184714 110 0400-><
widow-oss6a4 @@@ processing error (-107) req@fff810190ef1800 x1399145477651283/10 0400-><
widow-0ss6b4 @@@ processing error (-107) req@ffif8 1025d096800 x1399145481848315M10 0400->«
widow-oss6c2 @@@ processing error (-107) req@ffif8 103cc09f800 x13991454786993751M0 0400-><’
widow-0ss6¢3 @@@ processing error (-107) req@ffif8 10ff30a2450 x139914548198867310 0101->5¢
widow-oss7c1 widow1-OST0219: 4e4b5c44-d491-2166-91ba-cd1245037e60 reconnecting
widow-0ss8b3 widow2-OST0046: 5def1fb4-50e6-1aaf-ee67-42b074a0ead3 reconnecting

widow2-0OST006e: 0a01026b-255f-9b8e-c7b4-bdBeccO0a5e04 reconnecting
widow?2-OST00a3: 319f2a35-0d533-4941-Bdcd-Qacaad 7The9al reconnecting

Best Practice 5:
Diagnostic Procedures

* Collect from clients:

— Collect crash dumps (kdump)

— Lctl dk or debug daemon

— Timeouts

° lctl get_param —n ost.*.ost_io.timeouts

* On management server

— Aggregate kernel/Lustre syslog messages

— IPMI console logging (conman)

Best Practice 6:
Workload Characterization

* Need to determine if slow response time an issue or
expected behavior

» We have scripts that generate “MDS Trace Reports”

— Correlate Cray XK apstat information on jobs with rpctrace
from /proc/sys/Inet/debug

— Latencies by RPC type (e.g. LDLM_ENQUEUE)
- Email if LDLM_ENQUEUE >= 1s
— Top RPC intensive jobs (correlated with job size)

Best Practice 7:
Fill in the gaps with custom tools

* Implement purge policy
— We use ne2scan/genhit/purge from Nick Cardo at NERSC

* Usage by user/project
— Lustre DU - pulls usage data from DB instead of metadata

* Performance statistics

— DDNTool - polls DDN S2A 9900 performance and
environmental stats via API, then stores in DB

Summary

» We need consistency at scale

« Administration best practices

1.

N o R wbd

Common OS image
Configuration management
Monitoring and Alerting
Event correlation
Diagnostic procedures
Workload characterization
Custom tools

Resources

 DDNTool/Lustre DU

— J. Hill, D. Leverman, S. Koch, D. Dillow. “Determining the health of Lustre
filesystems at scale.” Cray User Group 2011, Fairbanks, AK. 1 May 2011.
Conference Presentation.

— http:/linfo.ornl.gov/sites/publications/files/Pub28556.pdf

* MDS Trace Tool

— R. Miller, J. Hill, D. Dillow, R. Gunasekaran, D. Maxwell. “Monitoring tools
for large scale systems.” Cray User Group 2010. Edinburgh. Scotland. 24
May 2011. Conference Proceedings.

e GeDI

— http://sourceforge.net/projects/gedi-tools/

 Splunk

— http://www.splunk.com

* Linux@LLNL Software

— https://computing.linl.gov/linux/downloads.html

