
LUG 25
Robinhood 4: the policy engine toolkit
Guillaume Courrier <guillaume.courrier@cea.fr>



Lustre User Group 2025 2

■ 1999: first policy engine at CEA to run purge policies
■ 2005: Robinhood v1
■ Metadata in memory: limit scalability
■ Purge policies, OST aware, multithreaded

■ 2009: open source
■ 2009: Robinhood v2
■ Introduction of a SQL database to increase scalability
■ More complex policies

■ 2015: Robinhood v3
■ More modular: possibility to create custom policies

■ 2018: Robinhood v4

04/02/25

A little bit of history



Lustre User Group 2025 3

■ Version 3.2 released this year: https://github.com/cea-hpc/robinhood/releases/tag/3.2.0
■ Support for project ID
■ policy sort order by size, e.g. lru_sort_attr = size;
■ asc/desc modifiers for sort order, e.g. lru_sort_attr = size(desc);
■ policy trigger thresholds as percentage of available inodes:

high/low_threshold_cntpct = xx%;
■ Better Lustre 2.15 support
■ RHEL9.4 OS family support

04/02/25

Robinhood 3 Update



Lustre User Group 2025 4

■ Integration of more scalable databases (e.g. MongoDB)
■ More modular:
■ Each functionalities of a policy engine are implemented by a single command
■ Minimal configuration
■ Database and file system specific code is clearly isolated and relatively small

■ Support for modern Lustre features:
■ FLR, DOM, DNE v2/v3…

But the main architecture remains the same:
■ Mirror all the metadata in an external database and run policies based on the mirror’s 

content

04/02/25

Why Robinhood 4?



Lustre User Group 2025 5

Core concepts
FS Entries, Backends and URI

04/02/25

1



Lustre User Group 2025 6

■ An FS entry is essentially an inode
■ A backend contains FS entries and lets us read or update them
■ File System backends: POSIX, Lustre, MPIFileUtils
■ Object Store: HESTIA (Object store developed during the IO-SEA Euro HPC Project)
■ Database: Mongo DB, SQLite (in progress), MPIFileUtils

■ Backends and FS entries are identified by a URI:

04/02/25

FS Entries, Backends and URI



Lustre User Group 2025 7

■ The POSIX backend will fetch all the regular metadata (stat and xattrs)
■ Extensions can be added to fetch additional info
■ Currently two extensions: Lustre and retention
■ New extensions can be added

04/02/25

POSIX backend and extensions



Lustre User Group 2025 804/02/25

Robinhood in action
Synchronization, queries, reports

2



Lustre User Group 2025 904/02/25

Synchronizing backends



Lustre User Group 2025 1004/02/25

Querying backends
■ rbh-find: implements most of the features of the regular find
■ rbh-lfind: Lustre aware version (support of –ost-index, -mdt-index, -pool, -hsm-state…)



Lustre User Group 2025 1104/02/25

Reports (v1)
■ Generic implementation that can create various kinds of reports
■ --group-by: specify on which data to aggregate results
■ --output: specify what to compute in the report

■ V1 computes everything on each invocation of the command
■ Future versions will precompute parts of those information to increase performance of 

common reports



Lustre User Group 2025 1204/02/25

Updating the backend with changelogs



Lustre User Group 2025 13

■ Distributed scan using the API of MPIFileUtils:

■ Interoperability with MPIFileUtils tools:

04/02/25

MPIFileUtils



Lustre User Group 2025 14

■ Users can set an expiration date on their files and/or directories using an extended 
attribute

■ Robinhood can then list expired entries and perform actions on them (purge, archive…)

04/02/25

Retention



Lustre User Group 2025 15

■ First deployments this year
■ Optimizations, benchmarks

■ rbh-undelete: recreate a file removed from Lustre using the info from the DB and the HSM 
archive for content

■ Scan garbage collection: remove stale entries from a backend
■ Design and first implementation of the Policy engine

04/02/25

Future work



Thank you, any questions?
Source code:
■ https://github.com/robinhood-suite/robinhood4
Submitting patches: 
■ https://review.gerrithub.io/q/project:robinhood-suite/robinhood4+status:open

https://github.com/robinhood-suite/robinhood4
https://github.com/robinhood-suite/robinhood4

	LUG 25 Robinhood 4: the policy engine toolkit
	A little bit of history
	Robinhood 3 Update
	Why Robinhood 4?
	Core concepts
	FS Entries, Backends and URI
	POSIX backend and extensions
	Robinhood in action
	Synchronizing backends
	Querying backends
	Reports (v1)
	Updating the backend with changelogs
	MPIFileUtils
	Retention
	Future work
	Thank you, any questions?

