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■ 1999: first policy engine at CEA to run purge policies
■ 2005: Robinhood v1
■ Metadata in memory: limit scalability
■ Purge policies, OST aware, multithreaded

■ 2009: open source
■ 2009: Robinhood v2
■ Introduction of a SQL database to increase scalability
■ More complex policies

■ 2015: Robinhood v3
■ More modular: possibility to create custom policies

■ 2018: Robinhood v4

04/02/25

A little bit of history
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■ Version 3.2 released this year: https://github.com/cea-hpc/robinhood/releases/tag/3.2.0
■ Support for project ID
■ policy sort order by size, e.g. lru_sort_attr = size;
■ asc/desc modifiers for sort order, e.g. lru_sort_attr = size(desc);
■ policy trigger thresholds as percentage of available inodes:

high/low_threshold_cntpct = xx%;
■ Better Lustre 2.15 support
■ RHEL9.4 OS family support

04/02/25

Robinhood 3 Update
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■ Integration of more scalable databases (e.g. MongoDB)
■ More modular:
■ Each functionalities of a policy engine are implemented by a single command
■ Minimal configuration
■ Database and file system specific code is clearly isolated and relatively small

■ Support for modern Lustre features:
■ FLR, DOM, DNE v2/v3…

But the main architecture remains the same:
■ Mirror all the metadata in an external database and run policies based on the mirror’s 

content

04/02/25

Why Robinhood 4?



Lustre User Group 2025 5

Core concepts
FS Entries, Backends and URI

04/02/25

1
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■ An FS entry is essentially an inode
■ A backend contains FS entries and lets us read or update them
■ File System backends: POSIX, Lustre, MPIFileUtils
■ Object Store: HESTIA (Object store developed during the IO-SEA Euro HPC Project)
■ Database: Mongo DB, SQLite (in progress), MPIFileUtils

■ Backends and FS entries are identified by a URI:

04/02/25

FS Entries, Backends and URI
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■ The POSIX backend will fetch all the regular metadata (stat and xattrs)
■ Extensions can be added to fetch additional info
■ Currently two extensions: Lustre and retention
■ New extensions can be added

04/02/25

POSIX backend and extensions
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Robinhood in action
Synchronization, queries, reports

2
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Synchronizing backends
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Querying backends
■ rbh-find: implements most of the features of the regular find
■ rbh-lfind: Lustre aware version (support of –ost-index, -mdt-index, -pool, -hsm-state…)
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Reports (v1)
■ Generic implementation that can create various kinds of reports
■ --group-by: specify on which data to aggregate results
■ --output: specify what to compute in the report

■ V1 computes everything on each invocation of the command
■ Future versions will precompute parts of those information to increase performance of 

common reports
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Updating the backend with changelogs
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■ Distributed scan using the API of MPIFileUtils:

■ Interoperability with MPIFileUtils tools:

04/02/25

MPIFileUtils
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■ Users can set an expiration date on their files and/or directories using an extended 
attribute

■ Robinhood can then list expired entries and perform actions on them (purge, archive…)

04/02/25

Retention
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■ First deployments this year
■ Optimizations, benchmarks

■ rbh-undelete: recreate a file removed from Lustre using the info from the DB and the HSM 
archive for content

■ Scan garbage collection: remove stale entries from a backend
■ Design and first implementation of the Policy engine

04/02/25

Future work



Thank you, any questions?
Source code:
■ https://github.com/robinhood-suite/robinhood4
Submitting patches: 
■ https://review.gerrithub.io/q/project:robinhood-suite/robinhood4+status:open

https://github.com/robinhood-suite/robinhood4
https://github.com/robinhood-suite/robinhood4
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