Agenda

• S2A Parallel Storage Architecture
• S2A9900 StorageScaler
• S2A6620
• DDN HPCSS Lustre Offering
• Future Requirements
Parallel Storage Goals

Low Latency - High Performance, Silicon Based Storage Appliance
- Parallel Access For Hosts
- Parallel Access To A Large Number Of Disk Drives
- True Performance Aggregation
- Reliability From A Parallel Pool
- Quality Of Service
- Scalability
- Drive Error Recovery In Real Time
- True State Machine Control
  - 10 Virtex 4 FPGAs, 16 Intel embedded processors, 8 Data FPGAs
S2A Technology enables scaling....

…it's like a skyscraper to which you can keep adding floors

DataDirect Technology

- **DirectOS**: Core S2A Operating System
  - Storage Management Features (DirectRAID, PowerLUN, SATAssure, Partial Rebuild)
  - Network and Host Management (LUN Masking/Zoning, Infiniband RDMA, Real Time Mode)
  - System Tuning Utilities
  - Field Upgradeable
- **DirectRAID**: Scalable, High Performance Data Protection Engine
  - Parity and double parity calculated in real-time on reads and writes
  - Multiple paths to data
  - Writes are as fast as reads
- **SATAssure**: Intelligent and Reliable SATA Drive Management
  - Delivers enterprise-class data protection
  - Makes large SATA pools reliable (not just less expensive)
  - Detects and corrects silent data corruption
An Implementation of Parallelism w/ Double Parity RAID Protection

- 8 FC-4, FC-8 and/or 8 x IB DDR Parallel Host Ports
- 2 x 10 SAS Loops to Disks
- Tier 1
- Tier 2
- Tier 3
- RAID “3/5” 8+2 Byte Stripe
- RAID 0

- Double Disk Failure Protection
- LUNs can span tiers
- All ports access all storage
- Implemented in Hardware State Machine
  - No penalty for RAID 6!
- Parity Computed On Writes AND Reads
- No loss of performance on any failure
- Multi-Tier Storage Support, SAS or SATA Disks
- Up to 1200 disks total
  - 960 formattable disks
Quality of Service

• S2A always reads (and writes) to all members of a RAID group

• FPGA designed to generate host data with missing elements

• If a single member of RAID group is slowed by internal error recovery S2A can still provide host data at a high level of QOS
Quality of service

Host Data Striping

Channel F’s data is rebuilt
Channel A’s data is rebuilt

FPGA

Cache

Protocol/PHY

Disks

Stalled Data

SCSI

FC - or - SAS

© 2008 DataDirect Networks, Inc. All Rights Reserved.
Data Corruption Error Handling

Note that the Cache and Disks have not corrected the data corruption.

We will need to rebuild the data into the cache and flush the data back to the disk in order to repair the problem fully.
The data is flushed to the disk and the disks have now correct Data on channel F. The cache has been repaired by the FPGA using the parity Information.
SATAssure Data Integrity

- SATAssure makes SATA drives behave like more expensive enterprise-class drives
  - S2A hardware enables SATAssure software to verify all data read from the disks
  - S2A hardware allows SATAssure to send hosts “fixed” data (data integrity is assured)
  - S2A hardware enables SATAssure to correct data on the disk for future accesses (self-healing array)
  - Multiple levels of disk recovery attempted before failing drives (replace fewer drives)
  - S2A controller journaling allows partial rebuilds (less time in degraded mode)
Agenda

• S2A Parallel Storage Architecture
• S2A9900 StorageScaler
• S2A6620
• DDN HPCSS Lustre Offering
• Future Requirements
S2A9900 StorageScaler

The World’s First Petabyte-Class Storage System
• 8th Generation Platform
• Design Goals:
  – Double throughput performance and 3x IOPS over S2A9550
  – Provide extremely high disk-side bandwidth to enable file systems and storage applications
  – Allow enterprise-class and SATA drives within the same system for storage tiering and HSM
  – Improve density and maximum system capacity
  – Utilize SAS drives/interconnects
  – Further enablement of InfiniBand clusters
  – Continue DDN leadership in $/performance and TB/sq.ft.
Key Highlights

• 2.4-2.8 GB/s sustained bandwidth per singlet
• ~3x IOPs of 9550
• PCIe connections to hosts
  • DirectOS 5.00: 4Gb FC and 4x IB DDR
  • DirectOS 5.05: also supporting 8Gb FC
• 10 SAS (4x) connections to disks per singlet
  • 24GB/s of Internal Bandwidth
• Internal Hard Drive
S2A9900 + Lustre

- Checkpoint Faster! Future-Proof for Multi-Core!

![Lustre File System Benchmarking: S2A9900](chart.png)

<table>
<thead>
<tr>
<th></th>
<th>Throughput (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sequential 1MB Reads</strong></td>
<td>5.57</td>
</tr>
<tr>
<td><strong>Sequential 1MB Writes</strong></td>
<td>5.48</td>
</tr>
<tr>
<td><strong>Random 1MB Reads</strong></td>
<td>2.05</td>
</tr>
<tr>
<td><strong>Random 1MB Writes</strong></td>
<td>3.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Peak</th>
<th>Real-World</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Peak</strong></td>
<td>5.57</td>
<td>5.59</td>
</tr>
<tr>
<td><strong>Real-World</strong></td>
<td>5.47</td>
<td>3.78</td>
</tr>
</tbody>
</table>

© 2008 DataDirect Networks, Inc. All Rights Reserved.
Why SAS?

- Drive and enclosure manufacturers moving from FC to SAS
  - Lower cost infrastructure
- Native support for SATA over SAS
  - No FC↔SATA bridge; reduces cost and complexity
- Potential to mix SAS and SATA drives in same enclosure
  - Serial SCSI Protocol (SSP)
  - Serial ATA Tunneling Protocol (STP)
- Potential for large configurations
  - 16,384 devices theoretical maximum
  - Facilitated by SAS expanders
- Excellent roadmap
  - 6 Gb/s on the horizon
## S2A9900 Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>S2A9900 Couplet</th>
<th>S2A9550 Couplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Disk Technology</td>
<td>SAS &amp; SATA (in same unit)</td>
<td>Fibre Channel &amp; SATA</td>
</tr>
<tr>
<td>RAID Parity Protection</td>
<td>RAID6 8+2</td>
<td>RAID3 (8+1+1), RAID6 8+2</td>
</tr>
<tr>
<td>Sustained Throughput</td>
<td>5.8GB/s – 5.9GB/s</td>
<td>2.4 GB/s – 2.8GB/s</td>
</tr>
<tr>
<td>IOPS</td>
<td>40,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Cache</td>
<td>5.0GB ECC/RAID Protected</td>
<td>5.0GB ECC/RAID Protected</td>
</tr>
<tr>
<td>Disk Side Ports/Port Type : Total Back-End Bandwidth</td>
<td>20 / SAS 4 Lane : 24GB/s</td>
<td>20 / FC-2 : 4GB/s</td>
</tr>
<tr>
<td>Host Side FC Ports</td>
<td>8 x IB 4x DDR or 8 x FC-4 or 8 x FC-8</td>
<td>8 x FC-4 or 8 x IB 4x</td>
</tr>
<tr>
<td>Dimensions</td>
<td>7 x 19 x 28 in. (4U)</td>
<td>7 x 19 x 25 in. (4U)</td>
</tr>
</tbody>
</table>

#### Blue Text Denotes Change from S2A9550
S2A = Storage without Compromise

S2A9900 has all S2A9550 features

- Massive throughput performance
- Scalable capacity & dense footprint
- Full-speed RAID 6 data protection
- No “degraded mode”
- Writes occur as fast as reads
- “Self Healing” array
- All data available from all host ports

Turbocharges the storage network:

- Use fewer storage systems
- Manage fewer devices and applications
- Save power
- Save floor space
## Scalability & Density

**The World Scalability & Density Leaders**

<table>
<thead>
<tr>
<th>Enclosures</th>
<th>5 Enclosures</th>
<th>10 Enclosures</th>
<th>20 Enclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>24U: 1/2 Rack</td>
<td>24U: 1/2 Rack</td>
<td>44U: 1 Rack</td>
<td>84U: 2 Racks</td>
</tr>
<tr>
<td>288x278</td>
<td>5 Enclosures</td>
<td>10 Enclosures</td>
<td>20 Enclosures</td>
</tr>
<tr>
<td>291x255</td>
<td>24U: 1/2 Rack</td>
<td>44U: 1 Rack</td>
<td>84U: 2 Racks</td>
</tr>
<tr>
<td>$S2A9900$</td>
<td>Up to 300 Drives</td>
<td>Up to 600 Drives</td>
<td>Up to 1,200 Drives</td>
</tr>
<tr>
<td>288x229</td>
<td>Up to 300TB</td>
<td>Up to 600TB</td>
<td>Up to 1.2PB</td>
</tr>
<tr>
<td>$S2A9700$</td>
<td>Up to 240 Drives</td>
<td>Up to 480 Drives</td>
<td>Up to 960 Drives</td>
</tr>
<tr>
<td>288x183</td>
<td>Up to 240TB</td>
<td>Up to 480TB</td>
<td>Up to 960TB</td>
</tr>
</tbody>
</table>

- **Simple Cabling:** All Enclosures are direct connected (up to 10 enclosures) to the S2A Appliances for easy configuration and maximum reliability.

- **Maximum Availability:** S2A Storage Systems can lose up to **20%** of the available drive enclosures without impacting host performance or data availability.
SleepMode: MAID Technology
Ideal for Data Archiving

- Leading Power Efficiency
  - Only 4 x 30A 220V Drops per 600TB
  - Dense Packaging to Reduce Space/Cooling
    - Up to 600TB/rack

- Truly Green Storage!

- S2A SleepMode™
  - Intelligent Power Management
  - Optimized for Backup/VTL/Archive
  - Spin Down Tiers of Inactive Drives
    - 12 seconds to spin up

### Power Savings Comparison

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Active</th>
<th>SleepMode*</th>
</tr>
</thead>
<tbody>
<tr>
<td>300TB (300 x 1TB SATA)</td>
<td>7.1 kW</td>
<td>4.5 kW</td>
</tr>
<tr>
<td>600TB (600 x 1TB SATA)</td>
<td>13.5 kW</td>
<td>8.29 kW</td>
</tr>
<tr>
<td>1.2PB (1200 x 1TB SATA)</td>
<td>26.1 kW</td>
<td>15.8 kW</td>
</tr>
<tr>
<td>1.2PB SleepMode Savings</td>
<td>Up to $36,000/yr</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Active</th>
<th>SleepMode*</th>
</tr>
</thead>
<tbody>
<tr>
<td>240TB (240 x 1TB SATA)</td>
<td>4.6 kW</td>
<td>2.9 kW</td>
</tr>
<tr>
<td>480TB (480 x 1TB SATA)</td>
<td>8.7 kW</td>
<td>5.3 kW</td>
</tr>
<tr>
<td>960TB (960 x 1TB SATA)</td>
<td>17 kW</td>
<td>10.1 kW</td>
</tr>
<tr>
<td>960TB SleepMode Savings</td>
<td>Up to $23,900/yr</td>
<td></td>
</tr>
</tbody>
</table>

* S2A SleepMode Savings results assume 80% data dormancy for online archive, $0.20 kWhr
StorageScaler 6000 Enclosure

- 1 x 60 drive or 2 x 30 drive channel options
- 1 Passive Baseboard
- 8 active SAS expander cards (4- “A” & 4 “B”)
  - Drive Expander Modules (DEMs)
  - Groups of 15 drives
  - Located in the middle of the enclosure drive section.
  - Top removable
- IO modules are SBB compliant and plug into the rear of the enclosure.
- Redundant Power Supplies
  - Hot-swappable
  - Plug into the rear of the enclosure
  - Provides system cooling
- Optional internal flash drive (under consideration)
  - Faster, persistent LUN for file system journaling
• Power Cycling Capabilities
  • Increase System Reliability
  • Reduce Drive Replacements & Rebuilds
    • Not all unresponsive drives are dead drives
    • S2A9900 performs a series of recovery techniques including command retries & drive resets
    • If unsuccessful, enclosure will have ability to power cycle individual drives to confirm the status of the specific device.
  • Capability complimented by journaled rebuild capability
    • Drives are back online in minutes
    • If the device cannot be revived it can be replaced online.
  • Reduce RMAs – **No more “NO Trouble Found RMAs”**

**SELF HEALING TECHNOLOGY FOR MAXIMUM UPTIME**
Agenda

• S2A Parallel Storage Architecture
• S2A9900 StorageScaler
• S2A6620
• DDN HPCSS Lustre Offering
• Future Requirements
DataDirect Networks
S2A6620 Appliance

Modular Storage Optimized for IOPS and Density Applications

- Up to 30,000 IOPS (to disk)
- 4 x Active/Active Host Ports: FC4, FC8
- Scales to Support 120 Hard Drives in 8U
- Up to 2.0 GB/s Performance
- Mix SAS + SATA For Storage Tiering
- Up to 11 Systems (660 TB) per Rack
- RAID 5 and RAID 6 Options
- Journaled Fast Drive Rebuild
- Active/Active Storage Managers with Failover
- Full SATAssure Data Protection

Shipping 2H08
Industry-Leading Extreme Density

60 Terabytes Per Drawer, 660TB Per Single Rack
StorageScaler Migration

Begin – Standalone RAID

SBB RAID Module

Upgrade to….

S2A9900

Replace SBB RAID Modules with SBB SAS Expander Modules

Future Storage Server w/ RAID

Replace SBB RAID Modules with SBB Storage Server Modules
Agenda

• S2A Parallel Storage Architecture
• S2A9900 StorageScaler
• S2A6620
• DDN HPCSS Lustre Offering
• Future Requirements
High Performance Cluster Storage Solution (HPCSS)

- S2A technology enables Lustre scaling
- Linearly scalable (from 2.5GB/s to 200GB/s+)
- Single client throughput of 1GB/s+
- Fault-tolerant architecture
- Ideal for cluster & grid computing
- DDN developed tools for easy installation
High Performance Cluster Storage Solution (HPCSS)

- **Full System Performance Efficiency**
  - Results using S2A9550 (4OSSs; DDR IB LAN)
  - Recent IOZone Summary:
    
    ```
    api = POSIX
    access = file-per-process
    ordering = sequential offsets
    clients = 64 (1 per node)
    repetitions = 3
    xfersize = 1 MiB
    blocksize = 32 GiB
    aggregate filesize = 2048 GiB
    
    access  bw(MiB/s)  block(KiB)  xfer(KiB)  open(s)  wr/rd(s)  close(s)  iter
    ------  ---------  --------  ---------  --------  --------  --------  ----
    write   2486.28   33554432  1024.00   7.44      836.06    73.76      0
    read    2649.34   33554432  1024.00   0.005301  791.57    42.81      0
    write   2443.70   33554432  1024.00   4.41      853.78    60.02      1
    read    2672.79   33554432  1024.00   0.004316  784.63    43.50      1
    write   2400.73   33554432  1024.00   12.60     860.96    66.45      2
    read    2678.90   33554432  1024.00   0.005354  782.84    40.55      2
    
    Max Write: 2486.28 MiB/sec (2607.05 MB/sec)
    Max Read: 2678.90 MiB/sec (2809.03 MB/sec)
    
    Using only 1 x Object Storage Server Building Block
    ```

Optionally sold with:
- S2A9900 Storage System
- S2A9700 & S2A9550 Storage Systems
Sample Lustre + DDN Customers

- Oak Ridge National Laboratory
- Synopsys
- Predictable Success
- Maui High Performance Computing Center
- Indiana University
- Lawrence Livermore National Laboratory
- NCSA
- LSU
- NASA
- PSC
- And many more...
Agenda

• S2A Parallel Storage Architecture
• S2A9900 StorageScaler
• S2A6620
• DDN HPCSS Lustre Offering
• Future Requirements
Future Requirements

Storage Challenges

• Data transfer rates will range to TBs/s
• Drive transfer rates will not exceed 120 MB/s
• Average seek times for SAS will remain at 3mS
• Average seek times for SATA will remain at 11ms
• Any random activity greatly diminishes the effective transfer rate
Evolving Technology

- Faster physical transfer architectures such as IB 32x
- File systems with better transfer aggregation
  - Lustre at 2MB? 4MB?
- Storage integrated with file services to enable intelligent data transfer reordering
- Storage elements are getting faster, better, cheaper, and lower in power consumption
  - SSDs are larger and more reliable and can be utilized in the same architecture
  - Smaller form factor disks are larger, cheaper, and more reliable
  - SRAM costs are decreasing with finer pitch implementations
Thank You.