5/17/18

Taking aim at ENOSPC: New layouts for an
old problem

Self-Extending Progressive File
Layouts (SEPFL)

Copyright 2018, Cray Inc. 1

Progressive File Layouts

* Allow different layouts for different areas of a
file

* Rich ground for new features:
Data on MDT

FLR: Mirroring, erasure coded, etc.

 Major improvements to ease of use,
performance, reliability, etc.

5/17/18 Copyright 2018, Cray Inc.

Pools & Tiering

* Pools & tiering are an obvious application of
PFLDifferent regions of file on different
storage classes (pools)

* By default all files use same layout, no
recourse if a pool runs out of space

 Seems odd but a major concern for some
customers

What about ENOSPC?

* Traditional Lustre response — Avoid it through
improved OST allocation

* PFL can help with this by distributing different
file regions to different OSTs (basically,
smaller allocation “granularity”)

e Butit’s all static for a given file —If a file is on a
set of OSTs and they run out of space,
allocation policies can’t help.

Dynamic Layouts

* Dynamic layouts: Layouts that change
automatically based on system state

e Possibilities abound, a lot of them fall foul of
“dirty data” problem

 Can’t change layout component that client is
currently writing to, no mechanism to handle

thati/o

Loophole 1: Uninitialized Components

* But you can change the extent of components
which are not initialized.

* Uninitialized “virtual” components which are
never init

* When i/o hits one of these components, client
sends request for layout to the server

* |nstead of initing the component, the server
replaces the needed extent with normal
layout space

5/17/18 Copyright 2018, Cray Inc. 6

Loophole 2: Increasing Extents

e |tis never safe to reduce the extent of an
initialized component

* But you can increase it by moving the start
“up” or the end “down”

 When I/O hits a “virtual” component, change
the extent of neighboring “real” components
to allow the i/o to complete

5/17/18 Copyright 2018, Cray Inc.

Self-Extending Layouts

* Self-extending PFL (LU-10070)

* Some PFL segments are virtual, never
instantiated

 Requestin a virtual segment requires layout
update

 MDS grants new layout (extend existing
component, spillover to trailing, or create new)

* Can make choice based on dynamic conditions
(e.g. free space)

5/17/18 Copyright 2018, Cray Inc.

Self-Extending Layouts

r/w request
past 100

r/w request
at 300

Or, same request w/out enough space - Extension refused: Write request (at 300)

2500, bt L [010) | [10.100) 4stripe | [100,200) ssd | -
at 300, but (200,e] hdd
no space T
New start for trailing component

5/17/18 Copyright 2018, Cray Inc. 9

More than Tiering

* Tiering is the obvious application, described
previously

* But there’s a good trick for files without
tiering
e “Self-spillover” or “spillover restriping”

* When the existing OSTs run low on space,
create a new component with same striping
properties

5/17/18 Copyright 2018, Cray Inc. 10

Spillover Restriping

l write request

purreauest [[010) [110,100 c:1,08T0 Sl |

attempted [[0.10) [[10,100)¢:1,08T0 | [10, st | +100[200]

extension,
new corlponent using striping from previous, but new targets

OSTO low
on space

= TORI

_OMPUT =T0O A
11

5/17/18 Copyright 2018, Cray Inc.

Why not just a better allocator?

e Partly orthogonal to improved allocation — It’s
still possible to run out of space

* Pools of small OSTs need spillover

* Also gives the allocator more chances to split
files, gives more chances to improve allocation
in a badly balanced file system

5/17/18 Copyright 2018, Cray Inc. 12

What about mirror + resync?

* Interoperates transparently with mirrors +
resync, etc.

* Any layout can have self-extending
components

* Extension policy is just applied before
Instantiating any components

* Works the same for mirrors as regular
components

5/17/18 Copyright 2018, Cray Inc. 13

Caveat Emptor

Not perfect, possibly a stop-gap solution

If we could restart i/o on a layout change (very
tricky), we could be truly responsive:
Only change layout on actual ENOSPC

Group locks don’t work today (requirement to
fully instantiate layout)

Append has a similar problem, but should be
fixable:
LU-9341

L
CRANY"
b

Finally: ~

* Any questions?

 Happy to answer questions later or by email
(paf@cray.com)

5/17/18 Copyright 2018, Cray Inc. 15

