Scientific Application performance and LUSTRE

Tom Wang
Lustre Group
Agenda

• Scientific Application IO
• LUSTRE IO Tuning
 > General IO Tuning
 > Different IO API
 > HDF5
 > Examples
• LUSTRE ADIO driver
Scientific Application IO

- Scientific HPC application software stack

Scientific HPC application software stack
Scientific Application IO

• Required IO and Checkpoint IO
 > Only writing or reading once then writing periodically.
 > Most of META data operations are open/create.

• Contiguous IO and non-contiguous IO

• Implementation
 > Some applications implement their IO by scientific IO lib (NetCDF or HDF5), some use MPIIO or POSIX directly.
 > Some libraries support parallel IO pNetCDF and HDF5. Some do not, for example NetCDF.
General IO Tuning

• Requirements for achieving good IO performance
 > Balanced OST load.
 – Choose right stripe size and stripe count according to the IO pattern.
 > Efficient RPC between clients and servers.
 – Saturate Network and disk IO
 – Do stripe size IO
 – Especially for Liblustre client.
 – Less RPC and lock conflicts
 – Stripe size aligned IO
General IO Tuning

• Different IO size comparison

IOR performance (MiB/sec) with different IO size 256 clients

Stripe_size = 1M.
In some unaligned size points (300k and 700k), the performance dropped a bit.
Different IO API

• POSIX
 > Call POSIX system call directly, no optimization.

• Independent
 > Optimize the data pattern locally by data_sieving and stripe_size aligned.

• Collective
 > Optimize the data over multi-clients. Change interleave, discontinuous and uneven IO load over multi clients into continuous and even IO load.

• Overhead of Independent and collective
 > Choose different API according to the application IO pattern.
HDF5

- HDF5 supports different low-level IO API

<table>
<thead>
<tr>
<th>driver</th>
<th>coll</th>
<th>Ind</th>
<th>Posix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time(seconds)</td>
<td>11.7</td>
<td>5.85</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Different layer performance with flash IO (256nodes)
HDF5

• Open
 > Open costs abnormal high time in Flash IO sometimes
 – 30%-40% time (1.3 seconds ---- 3.2 seconds)
 – Reason: In HDF5, when open existing file with (TRUNC flags), all the clients will call MPI_SET_File_size to truncate the file to zero, which occupies about 95% open time.

• Write
 > Improper read-modify-write for HDF5 collective IO

• Close
 > HDF5 close includes flush(HDF5_mpio_flush).
 – Which will cost about 40%-50% time.
Examples

- POP
 - The I/O client aggregates data from other computation clients. I/O size is about 60M.
 - Support Fortran POSIX IO, and NetCDF (non-parallel)

- Optimization
 - Implement HDF5 parallel IO
 - Stripe_size for 60M IO
 - 60M IO size will hold too much client lock cache of multi-server on client, which will impact other clients access those server. So choose stripe_size to make each client access servers in parallel.
Examples

• WRF mode
 > Produce a HDF5 file (about 8M)
 – Each client writes several K bytes (small I/O size) to the shared data_set.
 > Each client writes small and contiguous data segment
 – Lustre does not like this I/O pattern.
 – It is even worse for more clients.
 > Optimization
 – Optimize the WRF mode by the new Lustre ADIO driver.
 – Aggregate the data from multi-clients and write big I/O size.
LUSTRE ADIO Driver

• Collective Write

 > Reorganize the data between the clients according to striping information.

 -- Reorganize the data according to real data location on OST.

 -- Choose IO clients to avoid unnecessary communication between clients.

 -- Do stripe_size I/O

 > I/O patterns benefits from this driver.

 -- Big size IO will be split to stripe_size IO(POP).

 -- For small size IO, the data will be aggregated and do big size IO(WRF).
LUSTRE ADIO Driver

File domain 0

Stripe Size

Offset line

File domain 0’

File domain 1

File domain 2

ALIGNMENT

File domain 0’

File domain 1’

File domain 2’

DATA

REDISTRIBUTION

Client0

Client1

Client2

Client3

Client4

Client5

OST0

OST1

OST2
LUSTRE ADIO Driver

• Comparison

<table>
<thead>
<tr>
<th>IO size</th>
<th>256 bytes</th>
<th>512 bytes</th>
<th>1024 bytes</th>
<th>2048 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old adio</td>
<td>0.074 sec</td>
<td>0.059 sec</td>
<td>0.026 sec</td>
<td>0.015 sec</td>
</tr>
<tr>
<td>New adio</td>
<td>0.002 sec</td>
<td>0.003 sec</td>
<td>0.003 sec</td>
<td>0.003 sec</td>
</tr>
</tbody>
</table>

• Overhead

> In the ADIO driver, the time costs on communication increase a lot when IO size increases, which is unexpected.
 - The reason is being investigated.
Thanks & Questions

Tom.Wang@sun.com