

CERN Lustre Evaluation

Arne Wiebalck

Sun HPC Workshop, Open Storage Track Regensburg, Germany 8th Sep 2009

Agenda

A Quick Guide to CERN

Storage Use Cases

Methodology & Initial Findings

Current Thoughts & Wish List

Conclusion

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Agenda

A Quick Guide to CERN

Storage Use Cases

Methodology & Initial Findings

Wish List

Conclusion

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

A Quick Quide to CERN

CERN: European Organization for Nuclear Research

Located at the Swiss/French border near Geneva

Twenty Member States:

Austria	Belgium
Denmark	Finland
Greece	Hungary
Norway	Poland
Spain	Sweden

Plus eight Observer States:

Bulgaria France Italy Portugal Switzerland Czech Rep. Germany Netherlands Slovak Rep. UK

European Commission, India, Israel, Japan, Russian Federation, Turkey, UNESCO and USA

Budget (2008): 1154 MCHF (~715 MEUR) Personnel: 2600 Staff, 700 Fellows/Associates

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

A. Wiebalck: CERN Lustre Evaluations, Sun HPC Workshop, Regensburg, 8 Sep 2009

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

Fundamental Laws of Nature

CERN Department

Why do particles have mass? Newton could not explain it - and neither can we...

What is 96% of the Universe made of? We only know 4% of it!

Why is there no antimatter left in the Universe? Nature should be symmetrical

What was matter like during the first second of the universe's life, right after the "Big Bang"? A journey towards the beginning of time

A. Wiebalck: CERN Lustre Evaluations, Sun HPC Workshop, Regensburg, 8 Sep 2009

CERN's Tools

The world's most powerful accelerator: LHC

A 27 km long tunnel filled with high-tech instruments Equipped with thousands of superconducting magnets Accelerates particles to energies never before obtained Produces particle collisions creating microscopic "big bangs"

Very large sophisticated detectors

Four experiments each the size of a cathedral Hundred million measurement channels each Data acquisition systems treating Petabytes per second

Top level computing to distribute and analyse the data

A Computing Grid linking ~200 computer centres around the globe Sufficient computing power and storage to handle 15 Petabytes per year, making them available to thousands of physicists for analysis

Proton Acceleration & Collision

CERN Department

Protons are accelerated by several machines up to their final energy (7+7 TeV)

Such collisions take place 40 million times per second, day and night, for about 100 days per year

Head-on collisions are produced right in the centre of a detector, which records the new particle being produced **PLAY** Large Hadron Collider ATLAS Detector

The LHC Computing Grid

Agenda

A Quick Guide to CERN

Storage Use Cases

Initial Findings

Wish List

Conclusion

Storage Use Cases

HSM System

- CERN Advanced STORage Manager (CASTOR)
- 18.3 PB, 120 million files, 1'200 servers

Analysis Space

- Analysis of the experiments' data
- XRootD plus CASTOR

Project Space

- >150 projects
- Experiments' code (build infrastructure)
- CVS/SVN, Indico, Twiki, ...

User home directories

- 20'000 users on AFS
- 50'000 volumes, 25TB, 1.5 billion acc/day, 50 servers
- 400 million files

Why a Lustre Evaluation?

CERN Department

Lustre:

- Performance
- Scalability
- HEPiX FSWG

CERN:

- Home directories & projects on AFS
- CASTOR as HSM
- XRootD plus CASTOR for analysis

Lustre: An opportunity for consolidation?

Does Lustre meet the requirements? Can Lustre be operated?

Agenda

A Quick Guide to CERN

Storage Use Cases

Methodology & Initial Findings

Wish List

Conclusion

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Project Plan

Assemble a list of points to look at

- ✓ Understand requirements of the use cases
- ✓ Manageability

Gather information

- ✓ Lustre training
- ✓ Attend LUG
- Exchange experiences with other sites

Get hands-on experience

- Set up test instances, preprod instance
- Familiarize with certain functionality
- Integrate with CERN's tools for fabric management

Document the findings

A. Wiebalck: CERN Lustre Evaluations, Sun HPC Workshop, Regensburg, 8 Sep 2009

Use Case Requirements

CERN Department

HSM

Analysis Space

Home Directories/ Analysis Space

- Generic interface, CASTOR/TSM
- Scalable
- Support for random access
- Low latency access (diskbased)
- O(1000) open/sec
- Several GB/s aggregate bandwidth
- ~10% Backup
- Mountable plus XrootD access
- ACLs & quota

- Strong authentication
- Backup
- Wide-area access
- Small files
- Availability
- ACLs & Quota

Areas of Interest

- Strong Authentication
- Backup
- Fault-tolerance
- Special performance & Optimization
- HSM interface
- Life Cycle Management (LCM) & Tools

Strong Authentication

 v2.0: early Adaptation, v2.x full Kerberos (late 2010 / early 2011)

CERN

Department

- "robust" and "usable"
- Implementation not (yet) complete
- PSC early adopter, WAN setup

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

A. Wiebalck: CERN Lustre Evaluations, Sun HPC Workshop, Regensburg, 8 Sep 2009

CERN

21

Meta data (MDT)

Backup

- \checkmark LVM snapshots plus tar of EA
- ✓ Orphanfiles, Ghostfiles
- User data (OST)
 - × Crawling the name space
 - ✓ With v1.8.x: e2scan
 - ? With v2.0.x: changelogs
- Used in pre-prod instance (to TSM)

Fault-tolerance

Lustre comes with support for failover

- active/active for OSSs
- ➤ active/passive for MDS
- Used at other sites

> Technology

- Shared storage: FC, DRBD, iSCSI
- Heartbeat

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CERN Department

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

OSS: disk server (DAS/iSCSI targets), iSCSI arrays

A. Wiebalck: CERN Lustre Evaluations, Sun HPC Workshop, Regensburg, 8 Sep 2009

Special performance

Small files

- > No client-side caching, 1MB transfer unit, double lookup
- ➢ "How bad is it?"
- Recent improvements (OSS read caches)?

Understand tuning options

HSM

CERN Department

• CEA (J.-C. Lafoucrière, A. Degrémont)

- interface design
- Implementations
 - HPSS, Sun SAM-QFS, Enstore (FNAL)?
- HSM Mailing list quite active
- Beta version available later this year

Life Cycle Management

- Adding capacity (add an OSS)
 - Possible, but quiesce clients (?!)
 - Allocation policy, coordinated filling
- Removing capacity (remove an OSS)
 no user-transparent data migration
- MDT (re-)sizing
- Managing Quota
- Develop procedures / tools
 - Lustre upgrades
 - System upgrades (kernel)

Agenda

A Quick Guide to CERN

Storage Use Cases

Methodology & Initial Findings

Wish List

Conclusion

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Wish List

Complete the support for strong authentication

More control over the system

- Client-server coupling (recovery)
- Too powerful users (striping, pools)

Stronger Support for Life Cycle Management

- User transparent data migration

File replication

- Availability, different striping policies
- Easier maintenance (high level vs. redundant storage)
- Usable for migration?

Outsourcing of privileges

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

Current Thoughts

- New versions bring some helpful features
 - v1.8: VBR, adaptive timeouts, OSS readcache
 - v2.0: Kerberos, change logs, Clustered MDS
- Increased emphasis on Quality Assurance
- Milestones-based pre-releases
 - the "moving targets" problem
- Responsiveness of Lustre team
- Interest in "non-performance" features by other sites

Summary

- CERN is looking into Lustre as a candidate for Storage Consolidation
- Investigation on manageability is missing
- Input is welcome, share your experiences!

arne.wiebalck@cern.ch

Some links

- CERN: <u>http://www.cern.ch</u>
- CASTOR: <u>http://www.cern.ch/castor</u>
- XrootD: <u>http://xrootd.slac.stanford.edu/</u>
- AFS: <u>http://www.openafs.org</u>

