Lustre on Red Sky

LUG 2010

April 15, 2010

Steve Monk and Joe Mervini

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 5281788

HPC at Sandia

- Capability Computing
 - Designed for scaling of single large runs
 - Usually proprietary for maximum performance
 - Red Storm is Sandia's current capability machine
- Capacity Computing
 - Computing for the masses
 - 100s of jobs and 100s of users
 - Extreme reliability required
 - Flexibility for changing workload
 - Thunderbird will be decommissioned this quarter
 - Red Sky is our future capacity computing platform
 - Red Mesa machine for National Renewable Energy Lab

Capacity Computing

Red Sky main themes

Cheaper

- Over 5X the capacity of Tbird at 2/3 the cost
- Substantially cheaper per flop than previous large capacity machine purchases
- Leaner
 - Lower operational costs
 - Three security environments via modular fabric
 - Expandable, upgradeable, extensible
 - Designed for 6yr. life cycle
- Greener
 - 15% less power ... 1/6th power per flop
 - 40% less water ... 5M gallons saved annually
 - 10X better cooling efficiency ... from 70% to 97%
 - 4x denser footprint

Red Sky major innovations

Bridging from capacity to capability

- Many "Red Storm" characteristics (scaling) at commodity price
- 2-3X faster than Red Storm in mid range
- 1/3 operational costs
- Top Red Sky innovations
 - Petascale midrange architecture
 - Intel Nehalem processor
 - QDR Infiniband
 - 3D mesh/torus
 - Optical cabling
 - Optical Red/Black switching
 - Refrigerant cooling/glacier doors
 - Power distribution
 - Routing & Interconnect resiliency
 - Minimal Ethernet (RAS & mgmt. only)
 - Boot over IB
 - Software RAID at scale

Red Sky: Floor Plan

Cheat sheet

Hardware facts:

٠

- 505 TF Peak
 - Red Sky: 325 TF
 - Red Mesa: 180 TF
- 5,386 nodes (2,693 Sun X6275 blades)

 Total for Rows A-F (Red Sky + Red Mesa)
- 2.93 GHz quad core, Nehalem X5570 processor
 43,088 cores total
- 12 GB RAM per node (1.5 per core)
 - 64 TB RAM total
- 3D torus InfiniBand
 - QDR via Mellanox ConnectX on motherboard and InfiniScale IV in QNEM
 - 1,440 IB cables =9.1 miles (220 miles of optical strands)
- 124- J4400 JBOD storage enclosures providing ~ 6 PB (raw) for scratch, home and projects file systems
 - 5952 1TB Seagate SATA disks
- R134a based cooling doors
- 1.7 MW power (PUE of 1.27)
- 1,848 square feet of space in 6 rows
 - 68 Sun C48 cabinets
 - up to 96 nodes per rack
 - up to 768 cores per rack

4/9/10

Software facts:

- CentOS 5.3
- OFED 1.4.1
- SNL modified OpenSM (Subnet manager) with custom routing engine for 3D Torus (Torus-2QoS)
- Diskless boot over IB using a custom isolinux boot strap or GPXE
- SNL developed system management toolset
- SNL developed RAS system
- Lustre 1.8.x with patchless clients

X6275 Blade (2 nodes)

Red Sky near future

- IB Torus Quality of Service testing
 - So far we've not seen Lustre and MPI traffic "collide", but as we scale out we are anticipating this to be a potential issue
- Phases of Red Sky and Lustre
 - Phase 1: get the local disks into production first
 - Storage issues have caused significant delays
 - Phase 2: bring the 1 PB + site Lustre file systems to the machine using IB to 10GigE routers
 - Infrastructure is in place and we should have this completed by the end of this month

Lustre on Red Sky

Goals:

- Provide home/projects/scratch Lustre file systems
- Adhere to the Sun HPC stack
- Implement software raid on Sun provided JBODs
- Design for easy administration

Storage Layout

- Three security domains require three sets of storage
- ~3 PB SATA, 68 TB SAS storage
- home/projects ~19 TB available/domain
- Scratch ~700 TB available/domain
- MDTs ~6.5 TB/file system

Software Raid

- MDTs configured as RAID10 arrays
- Home/projects OSTs configured as RAID10 arrays with external journal/bitmap
- Scratch OSTs configured as RAID6 8+2 arrays with external journal/bitmap
- Scripts developed to automate array creation
- Scripts developed to automate array assembly via UUID vs. mdadm.conf

SAS cable layout

RAID6 Physical Layout

OSS to OST allocations (plus journal and bitmap drives)

RAID10 Physical Layout

Front View RAID10: OSS to OST allocations (plus journal and bitmap drives)

Startup

- Custom init script used to assemble and mount lustre OSTs/MDTs
- mdadm devices identified via common configuration file
- Includes switches from simple assembly to failover
- Additional automated processes employed

Configuration File Example

# mds-home1 #				
mds-home1 ## oss-home1 #	data	/dev/md1	1ef0d052:bd33be71:5afa4482:ff4bfb87	mds-home2
oss-home1 oss-home1 oss-home1 oss-home1 oss-home1 oss-home1 # #	journal bitmap journal bitmap data data data	/dev/md11 /dev/md21 /dev/md12 /dev/md22 /dev/md1 /dev/md2	0469e61a:29d36257:62f61c6b:ad30a7f2 244f9e60:f06a8d98:40233d08:f14f4412 bb6248c1:140f335d:18e3b3b5:9c807b97 72a77611:68577fb9:63df278d:9dc6889e fe1afd7e:e61cb8b6:eb7a5af3:288168ea 246a84a9:cadf0408:936a8e53:5082721d	oss-home2 oss-home2 oss-home2 oss-home2 oss-home2 oss-home2
#				
oss-home2	journal	/dev/md13	818c0f32:df64d3c2:b30e5074:bfcdf5c1	oss-home1
oss-home2	bitmap	/dev/md23	f8eeae5c:ae27c1f2:cc622350:240a687e	oss-home1
oss-home2	journal	/dev/md14	06bbf143:d1dab445:a0e3deca:77bd0d2b	oss-home1
oss-home2	bitmap	/dev/md24	3e4a5713:2ae474bd:4312b1c0:71e9f41d	oss-home1
oss-home2	data	/dev/md3	06b6eae3:6f881bec:6aa581bf:34f646fc	oss-home1
oss-home2	data	/dev/md4	b5552266:4f8ab4e1:d0a53a60:2be36bf0	oss-home1

Failover

- MDS and OSS servers configured in failover pairs
- Failover handled by init script
- Manual failover is an acceptable solution
- Automated failover will be tested and implemented in the future.
 - Linux-HA and STONITH
 - Hardened scripts to prevent false positives

Disk and Lustre Performance

- Individual disk performance on 1TB SATA drives average > 50 MiB/sec
- 1.2 GiB/sec theoretical per JBOD
- IOR used a primary test environment for Lustre
- Actual performance closer to 500 MiB/JBOD on RAID6 OSTs.
- Observed a 21% boost in performance when tested with RAID10 OSTs but at a cost of 37% reduction in capacity.

Difficulties

- Lack of any substantial configuration/delivery support of storage system from Sun PS group
- Difficulty getting the right people to address on-going hardware problems
- Hardware problems with hard drives/JBODs exposed during our load testing have made storage reliability questionable
 - Single disk failure causes file system hang
 - Abnormal addressing of drives during server reboot causing multiple host paths to a single drive
- Other machine specific hardware issues delayed storage testing (e.g. IB cable problems)
- Complexity of software RAID had a steep learning curve
- Red Sky storage issues delayed other projects (e.g. DDN 9900 based site file system)

Positives

- Lustre support has been exceptional
- Very few problems with Lustre 1.8.1.1
- Performance is respectable
- Early problems reported via Lustre support were resolved quickly with patches, tuning
- Very few disk failures compared with the total number of drives

Conclusion

- Software RAID includes additional risks and administration vs. hardware RAID solutions
- Limited testing of hardware in these configurations make it ill-suited for rapid deployment in a production environment
- Lustre has been a shining star on this machine
 - Red Sky users are pleased with its performance

