
1

Lustre: some protocol
basics & debugging
LUG, April 2009

Johann Lombardi
Lustre Group
Sun Microsystems

2

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

2

3

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

3

April 2009 LUG Sun copyrighted material DO NOT COPY 4

princples

Pre-built rpms

• We provide pre-built rpms
> For 1.6, RHEL4/5, SLES9/10
> For 1.8 & 2.0, RHEL5/SLES10 and

RHEL6/SLES11 (when available)

• Include OFED & TCP support
• Rebuilding rpms is needed if:
> Need support for another interconnect

(Myrinet, ...)
> Need to apply kernel or lustre patches

April 2009 LUG Sun copyrighted material DO NOT COPY 5

princples

Building lustre (server side)

• Kernel patches needed
> Re-add journal callback support in jbd
> Jbd fixes & statistics
> scsi disk statistics

– could be removed if blktrace enabled

> Export some symbols used by lustre
> API for setting block device read-only
> ...

• First step is to apply those patches & build the
patched kernel
> Use quilt to manage patches
> Patch series available in lustre/kernel_patches/series
> Quilt setup /path/to/series, quilt push -a
> kernel config files in lustre/kernel_patches/kernel_configs

April 2009 LUG Sun copyrighted material DO NOT COPY 6

princples

Building lustre (server side)

• Once the kernel is built, we are ready to build
the lustre rpms:
> Get the lustre source
> ./configure --with-linux=/path/to/kernel ..
> make rpms

• This produces serveral rpms:
> lustre-modules: the lustre kernel module
> lustre-ldiskfs: ext3+patches
> lustre-$version: utils (mkfs.lustre, mount.lustre, ...)

• Install the patched kernel + lustre/ldiskfs
rpms on the servers (OSSs/MDSs)

April 2009 LUG Sun copyrighted material DO NOT COPY 7

princples

Building lustre (client side)

• No kernel patches needed
> except for RHEL4/SLES9
> You can run the patched kernel on the clients if you wish

• Get the lustre source
> ./configure --with-linux=/path/to/kernel --disable-server ..
> make rpms

• Build the lustre rpms as previously:
> ./configure --with-linux=/path/to/kernel

 --disable-server ..
> Generate rpms with client only support

• Install the lustre rpms on the client nodes

April 2009 LUG Sun copyrighted material DO NOT COPY 8

princples

Building lustre with DMU support

• No change

• ldiskfs rpm replaces by kDMU rpm

• kDMU integrated in lustre source
> built as part of lustre, like ldiskfs today
> only needed on OSS/MDS (again as ldiskfs)

9

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

9

April 2009 LUG Sun copyrighted material DO NOT COPY 10

Systems in a Lustre Cluster

Lustre Components

Clients
LOV

MDS OSS

File open, Directory
Operations, metadata,
and concurrency

Recovery, file
status & creation,
quota acq/rel

File I/O and
file locking

April 2009 LUG Sun copyrighted material DO NOT COPY 11

Striping

File open & write
Lustre Client

Metadata Server

OSS 1

OSC
3

File open request

Write (obj 1)

W

Write (obj 2)

OSC
1

MDC

Linux VFS

Lustre client FS

LOV

Odd blocks, even blocks

Parallel Bandwidth

MDT

OST 1 OST 2 OST 3

File metadata

Inode A (obj1, obj2)

12

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

12

April 2009 LUG Sun copyrighted material DO NOT COPY 13

MDS execution

• MDS executes transactions
> In parallel by multiple threads

• Two stage commit:
> Commit in memory – after this results are

visible
> Commit on disk – in same order but later
> This batches the transactions

• Key recovery issue
> Lustre MDS can lose some transactions
> Clients need to replay in precisely same

order

April 2009 LUG Sun copyrighted material DO NOT COPY 14

Request lifecycle

Client MDS

1. Request

3. Reply

5. Commit

2. Execute the request

4. Commit callback from FS

MDS FS

3a. Reply Ack

April 2009 LUG Sun copyrighted material DO NOT COPY 15

Client MDS interaction
• Send request
• Request is allocated a transno
• Send reply which includes transno
• Clients acknowledge reply
> Purpose: MDS knows clients has transno

• Clients keep request & reply
> Until MDS confirms a disk commit
> That's where we need commit callback
> Purpose: client can compensate for lost trans

• MDS has disk data per client
> Last executed request, last reply information

April 2009 LUG Sun copyrighted material DO NOT COPY 16

Commit callbacks

• Run a callback, when disk data commits
• Ability to register & run callbacks has

been removed from JBD in 2.6.10
> Added back by the jbd-jcberr* patches

• Similar mechanism needed for DMU
support

April 2009 LUG Sun copyrighted material DO NOT COPY 17

Bulk write replay

• Before 1.6.7
> No replay for bulk write
> Once the write rpc is acknowledged, data

are safely written to disk

• No longer true in versions >= 1.6.8
> Including 1.8.0
> Oleg's async journal patch
> Same scheme as for MDS requests now

18

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

18

April 2009 LUG Sun copyrighted material DO NOT COPY 19

Problem Statement

• Lustre is distributed filesystem
• some POSIX calls change on-disk

state on few nodes
• Examples:
> unlink removes MDS and OST inodes
> setuid changes owner on MDS and OST

• need to maintain consistent state
after failure

April 2009 LUG Sun copyrighted material DO NOT COPY 20

Maintaining Consistency: llog

• For distributed transaction commits
• Terminology
> Initiator – where the transaction is started
> Replicators – other nodes participating

• Normal operation
> Write a replay record for each replicator on the

initiator
> Cancel that record after the replicators commit, in

bulk
– Commit callback needed here

• Recovery
> Process the log entries on the initiator

April 2009 LUG Sun copyrighted material DO NOT COPY 21

Use case: unlink

MDS OST

client

llog

REINT_UNLINK => MDS
COOKIE => client

OST_DESTROY+cookie=>OST

LOG_CANCEL => MDS
recovery: READ_LLOG=>MDS

llog_add()
llog_cancel()

April 2009 LUG Sun copyrighted material DO NOT COPY 22

• OST commits objects destroy
> Then it’s time to cancel the MDS llog records
> Add the cookies to the llog cancel page
> … truncate the object
> Start a transaction (fsfilt_start_{log})

S

> Remove the object (filter_destroy_internal)

R

> Add the commit callback (fsfilt_add_journal_cb)

A

– CB is filter_cancel_cookies_cb
> Finish the transaction (fsfilt_finish_transno)

F

Use case: unlink (cont'd)

23

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

23

April 2009 LUG Sun copyrighted material DO NOT COPY 24

I/O in the OST
• The page cache made things too slow in Linux 2.4

• Reserved memory registered for DMA can help

• In 1.6, OSS does non-cached direct IO
> Nothing ends up in the OSS page cache

• OSS page cache has been resurrected in 1.8
> For now, only for read
> Huge performance increase when reading small files

back

25

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

25

April 2009 LUG Sun copyrighted material DO NOT COPY 26

File System Backend

Lustre Distributed Lock Manager
• A lock protects a resource

> Typically, a lock protects something a client caches

• A client enqueues a lock to get it

• An enqueued lock has a client and server copy

• Servers send blocking callbacks to revoke locks

• Servers send completion callbacks to grant locks

• Processes reference granted client locks for use

• Processes de-reference client locks after use

• Clients cancel locks upon callbacks or LRU overflow

• Callbacks were called AST’s in VAX-VMS lingo

• Cancel was de-queue in VAX-VMS lingo

April 2009 LUG Sun copyrighted material DO NOT COPY 27

File System Backend

LDLM history

• Basic ideas are similar to VAX DLM
> You get locks on resources in a namespace
> All lock calls are asynchronous and get completions
> There are 6 lock modes with compatibility
> There are server to client callbacks for notification
> There are master locks on the “server” and client locks

• Differences
> We don’t migrate server lock data, except during failover

– LDLM is more like a collection of lock servers

> There are extensions to:
– Handle intents – interpret what the caller wants

– Handle extents – protect ranges of files

– Handle lock bits – lock parts of metadata attributes

April 2009 LUG Sun copyrighted material DO NOT COPY 28

File System Backend

Client Lock Usage
• DLM locks are acquired over the network

> The locks are owned by clients of the DLM
– MGC, OSC & MDC are examples

• Use of locks
> Locks are given to a particular lock client
> Processes reference the locks
> Locks can be canceled only when idle

• Differences
> Locks are not owned by processes (VAX)

• Servers can take locks also

April 2009 LUG Sun copyrighted material DO NOT COPY 29

File System Backend

Lustre Lock Namespaces

• OST: namespace to protect object extents.
> Resources are object ids
> Extents in the object are “policy data”

• MDS: namespace to protect inodes and names
> FIDs are the resources
> Lock bits are policy data
> Intents bundle a VFS operation with its lock requests

• MGS: namespace for configuration locks
> Presently only one resource
> Protects the entire configuration data

April 2009 LUG Sun copyrighted material DO NOT COPY 30

I/O protocol

File I/O locks and lock callbacks

• Clients must acquire a read-lock to cache data
for read
> Locks cover an optimistically large file extent
> Locks are cached on clients

• Before writing, a client obtains a write lock
• Upon concurrent access by another client
> Client locks see a callback when others want a conflicting

lock
> After the revocation callback arrives, dirty data is flushed
> Cached data is removed
> Then the lock is dropped

April 2009 LUG Sun copyrighted material DO NOT COPY 31

I/O protocol

Client Lock Callback Handling

• Callback function is bound to lock
> upon client side lock enqueue
> RPC’s made to the client ldlm service by servers
> Handed by client lock callback thread : ldlm_cbd

• Completion callback
> When lock is granted

• Blocking callback
> Called when servers try to cancel locks in clients
> Causes cache flush

April 2009 LUG Sun copyrighted material DO NOT COPY 32

I/O protocol

Typical Simple Lock Sequence

Sys A: has

Lock on R
Sys B: need

Lock on R

Lock svc:

 - reply ASYNC to requestor

 - send callback to holder

 - monitor arrival of cancelSys A:

 - reply to svc

 - await that lock is inactive

 - flush dirty data,

 - remove cached data

 - cancel the lock

Sys B:

 - acquire lock on R

Blocking callback

Lock svc:

 - receive flushed dirty data

 - receive cancellation

 - send completion callback

Lock Enqueue

Completion Callback

Lock cancellation

April 2009 LUG Sun copyrighted material DO NOT COPY 33

I/O protocol

I/O & Locking

• Stripe locking
> Change from

– Lock all stripe extents, do all IO in parallel, unlock all

> To
– For all stripes in parallel: lock, do IO, unlock

> Holding locks from multiple servers
– Can lead to cascading aborts
– Is necessary for truncate and O_APPEND writes

• Disallow client locks under contention
> When an extent in a file sees concurrent access

– Ask the client to write through to the server

> This eliminates callback traffic and cache flushes

April 2009 LUG Sun copyrighted material DO NOT COPY 34

I/O protocol

File size and glimpses
• Normal case

> Only one client does IO to a file, this client knows the size

• Size of file without active IO from any client
> Currently file size derived from object sizes

> Will be on the MDS in the future (SOM) - optimal for quiescent files

• Size of a file under active IO
> Now any client with “far write lock” maybe growing the file

> A full file write lock would protect the size, but flushes all caches!
– Lustre does NOT DO THIS, unless the file is not busy

> In Lustre the OSS’s ask the clients with furthest locks for the size
– This is a glimpse callback - gives one view of file size

– A glimpse callback causes clients to cancel locks if they are not using them

> Glimpsing is the optimal method to get file size during active IO

April 2009 LUG Sun copyrighted material DO NOT COPY 35

I/O protocol

Configuration Lock

• The central configuration server is the MGS

• When a client fetches a log it also gets a lock
> The lock gets callbacks when the configuration

changes

• Callback triggering events
> Online addition of OST devices
> Setting timeouts is global now
> Many others usage (OST pools creation, quota

setup,)

s

> More robustness fixes

April 2009 LUG Sun copyrighted material DO NOT COPY 36

I/O protocol

Timeouts and Eviction
• Client requests time out unless a reply is received

• Client-originated RPC timeouts will cause the client to:
> Disconnect from the affected server

> Ping, reconnect to server or failover and retry/complete
operations

• Server callback RPC timeouts evict the affected client
> Reconnects to server like an evicted NFS client (not a perfect

solution, but OK)

> The client will learn of eviction during its next request

> Upon eviction the client must purge its cache
– if data is dirty, this means a small amount of data loss!

> In-flight network ops will return -EIO to application

> Eviction prevents one bad client halting the whole cluster

37

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

37

April 2009 LUG Sun copyrighted material DO NOT COPY 38

Quota Architecture Primer
• A centralized server hold the cluster wide limits:

the quota master(s)
> guarantees that per-uid/gid global quota limits are not

exceeded
> track quota usage on slaves
> 1.6/1.8/2.0: single quota master
> 3.0: multiple quota master required for CMD

• Quota slaves
> all the OSTs and MDT(s)
> manage local quota usage/hardlimit
> acquire/release quota space from the master

• Acquire/release RPC to grant space to slave
> initiated by slaves & processed by master(s)
> Early space acquisition to prevent blocking write/create

rpcs

April 2009 LUG Sun copyrighted material DO NOT COPY 39

Quota Master(s)

• 1.6/1.8/2.0: 1 single master running on the
MDS

• 3.0: multiple master required for CMD

• In charge of:
> storing the quota limits for each uid/gid
> accounting how much quota space has been

granted to slaves

• quota information are stored in administrative
quota files
> files proper to Lustre (admin_quotafile.usr/grp)
> format identical to the one used in the VFS

April 2009 LUG Sun copyrighted material DO NOT COPY 40

Generic Flow of a write request

sync or async?

any quota limits

for this uid/gid?

write data

enough left quota

space to grant one

more qunit?
enough local quota space

to satisfy the request?

write from the

grant cache?
trigger early acquisition

if needed

Client node OSS (quota slave) MDS (quota master)

is the uid/gid

known to be already

over quotas?

queued for

writeback

se
n
d
 w

rite
 R

P
C

write RPC

completed

se
n
d
 d

q
a
cq

 R
P
C

w
rite request

 a
sy

n
c

ye
s

 no

 1. w

rite

acknowledged

 sync
2
.
w

ri
te

ba
ck

 n
o

 yes

 write

acknowledged

ye
s

 no

 yes: ignore quota limit

 s
end reply

 yes: grant a qunit to the slave

 no: deny acq request

 no: let ldisfks

return EDQUOT

se
n
d
 d

q
a
cq

 R
P
C

don't wait for the reply

April 2009 LUG Sun copyrighted material DO NOT COPY 41

Quotas support with kDMU

• ZFS currently doesn't support per-
uid/gid quotas
> uses quotas on fileset instead
> Per-uid/gid quotas is under development

• Future plan
> Currently lustre quota relies on the linux quota

module
> Implement quota inside lustre instead
> Relies on ldiskfs/dmu only for block/inode usage

accounting
> Using standard dlm mechanisms to manage

both quotas & grant space

42

Topics

> Building Lustre
> Some protocol basics

–Request lifecycle
– llog
– I/O in the OST
– ldlm
–quota

> Debugging

42

April 2009 LUG Sun copyrighted material DO NOT COPY 43

Methodology

Manifestations of trouble

• Problems manifest themselves in multiple ways:
> An LBUG / Oops / Panic

– Messages on consoles
– Modules will not unload

> A timeout of a client RPC or bulk data transfer
– Systems are stuck, clients can report timeouts
– Server threads being stuck (no progress)

> A timeout of a lock callback (formerly AST)
– Servers report timeouts

> Incorrect results
> Performance is awful

April 2009 LUG Sun copyrighted material DO NOT COPY 44

General actions

General actions
• Diagnose
> Check local console and server consoles

– Oopses, LBUGS and timeouts are found here
> Server problems can have different manifestation

– Hung threads, high load, no cpu usage – server thread is
stuck

> /var/log/messages
– Less common errors may end up here

• Check your network
> lctl ping
> LNET Self Test (LST)

• If there is trouble
> Collect information – Lustre Diagnostics
> Reboot some nodes to get cluster moving again

April 2009 LUG Sun copyrighted material DO NOT COPY 45

General actions

LBUG / Oops / Panic
• An LBUG always requires a reboot
> We intentionally hang the thread that LBUGs -- it will

never return
> We do this to make it easy to gather stack traces

– or if you have a crash dump utility, to examine kernel structures
on that task

> That thread may have locks held
> In any case, it found something bad

• Oops - a failed kernel assertion
> an oops will usually kill the thread
> it may or may not have been fatal to the node
> you should reboot at your earliest convenience

• Report oops/LBUG output and the events leading
to it

April 2009 LUG Sun copyrighted material DO NOT COPY 46

General actions

LBUG Example
LustreError: 6596:0:(rw.c:159:ll_truncate())

ASSERTION(atomic_read(&lli->lli_size_sem.count) <= 0) failed
LustreError: 6596:0:(module.c:46:kportal_assertion_failed()) LBUG
LustreError: dumping log to

 /tmp/lustre-log-b2.boston.clusterfs.com.1108864884.6596

• Post-process the log:

lctl df /tmp/lustre-log-b2.boston.clusterfs.com.1108864884.6596
/tmp/foo

• Collect other information
> See next section
> File in a bug at Sun

April 2009 LUG Sun copyrighted material DO NOT COPY 47

General actions

Reboot some nodes

• Reboot OSS or MDS – minor if any
consequences
> Before you do this collect the bug

information – see later

• Reboot a stuck client – quite safe
> umount – unmount client

– may hang & disconnects only once

> umount -f – client will not attempt to
disconnect

April 2009 LUG Sun copyrighted material DO NOT COPY 48

Gathering and filing bug information

Check the Console First

• It might have your answer
• Include messages with any bug report or support

request
• In many cases, this is Lustre’s only way to

communicate
> dmesg
> /var/log/messages

April 2009 LUG Sun copyrighted material DO NOT COPY 49

Gathering and filing bug information

Check Other Consoles
• Lustre is an enormous distributed system
• Most problems involve multiple nodes
• Chances are, the log will tell you which

nodes:

LustreError: Connection to service ost2_svc (on
192.168.0.107) was lost (timeout waiting for reply);
in progress operations using this service will wait
for reconnection

LustreError: This client was evicted by ost2_svc (on
192.168.0.107); in progress operations using this
service will fail.

April 2009 LUG Sun copyrighted material DO NOT COPY 50

Gathering and filing bug information

Lkcd / kdump / netdump

• These tools were an amazing benefit early on
• They pay for themselves with the first 1-in-a-

million crash
• Historically, its stack traces are more

trustworthy than SysRq-T
• You can also examine data structures in the

kernel
• You can also examine live, running kernels
• We sometimes ask customer to upload crash

dumps to our ftp site (if possible)
> We are very familiar with crash/lcrash

April 2009 LUG Sun copyrighted material DO NOT COPY 51

Gathering and filing bug information

SysRq
• Turn it on:

> /etc/sysctl.conf, add “kernel.sysrq=1”
> sysctl -w kernel.sysrq=1
> Trigger it with /proc/sysrq-trigger

• SysRq-P (one stack trace) is usually uninteresting
• SysRq-T (all stack traces) is voluminous but very

useful
> Especially if a process is hung and won’t make progress

• SysRq-M (memory info) is sometimes enlightening
> Is the system essentially out of memory?
> Are any of the counters impossible values?

• ps is often useless – the kernel “D” state is not
unique
> It means “uninterruptible sleep”
> It’s interesting to know, but could be anything.
> Get the Sysrq-T traces!

April 2009 LUG Sun copyrighted material DO NOT COPY 52

Gathering and filing bug information

Collecting Lustre Debug Logs
• Lustre keeps a ring-buffer of pages in the

kernel
> by default, 5 MB/CPU
> /proc/sys/portals/debug_mb

• /proc/sys/lnet/debug is a bitmask
> Let's turn on and off some kinds of messages
> We may ask you to modify this before reproducing a

problem
> The default is not bad for production use, but you

might try others

• These logs are extremely user-unfriendly

April 2009 LUG Sun copyrighted material DO NOT COPY 53

Gathering and filing bug information

Getting a Debug Log

• Sometimes the system volunteers a debug log
> after a LBUG

• Other times we’ll ask you to generate one
• If we do, please clear the buffers before you

reproduce:
> lctl clear

• 5 MB sounds like a lot, but it’s usually not.
> These logs are incredibly verbose.
> Try to have as little running alongside your test as

possible.

April 2009 LUG Sun copyrighted material DO NOT COPY 54

Gathering and filing bug information

Post-processing

• If you get a log the normal way:
lctl dk [filename]

…then lctl post-processes it for you.

• If the kernel dumps it on its own (e.g., an
LBUG):
lctl df INFILE [OUTFILE]

• Please do this before you send it to us.

April 2009 LUG Sun copyrighted material DO NOT COPY 55

Gathering and filing bug information

Lock Dump

• You can get a complete lock dump in the logs
• Only visible if DLMTRACE is enabled in

portals/debug
echo > /proc/fs/lustre/ldlm/dump_namespaces

• Sometimes need a lock snapshot from several
nodes

--- Resource: c277aa80 (717958/0/0/0) (rc: 1)
Granted locks:
 -- Lock dump: c8175280/0xa6f5f87dbc6b3693 (rc: 1) (pos: 1) Node: NID

0:192.168.0.3 on socknal (rhandle: 0x7899f232a33d8fb8)
 Resource: c277aa80 (717958/0)
 Req mode: PR, grant mode: PR, rc: 1, read: 0, write: 0
 Extent: 0 -> 18446744073709551615 (req 253112320-253128703)

56

Questions?
 johann@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	CFS Business today
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

