
E xc e pt i ona l  ser v i c e i n  t he  na t i ona l  i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology 
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for 

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

E xc e pt i ona l  ser v i c e i n  t he  na t i ona l  i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology 
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for 

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SANDIA LABS LUSTRE FILESYSTEM CUSTOMER IO DOS 
MITIGATION USING NRS TOKEN BUCKET FILTERS

Michael Aguilar, Jason Peters

Using Built-In Token Bucket Filter and Scheduling features of 
Lustre FS

File Storage Team, HPC Systems

Sandia National Labs, Albuquerque, NM 87114

SAND2025-01482C



PROBLEM---CURRENT SHARED FILESYSTEM ISSUE
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• Scratch filesystems are shared between several users and HPC machines, on Sandia’s internal 
HPC networks

• One ‘bad’ batch run can create an IO load issue on the Lustre Filesystems and load down the 
MDTs and OSTs.

• A method for throttling communications to the filesystems, for bad applications, could be 
advantageous to us, as it could help to reduce the scratch filesystem outages.

▪ Our goal is to reduce the impact that any single batch job can have on a shared 
filesystem

▪ We want to be able to make it so the filesystem can respond to all of the users

▪ We want to protect the filesystem from ‘falling over’.



CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE

• We can leverage a couple of tools within Lustre to maintain some user control of Lustre 
Server access.

▪ Lustre operates the transactions, with client applications, with Remote Procedure Calls 
(RPC)

▪ In order to maintain filesystem transactional control of the RPCs, Lustre has a ‘Network 
Request Scheduler’ (NRS) that gets the RPC requests, in parallel, from all of the running 
batch jobs, on all of the HPC systems

▪ The NRS is able to throttle the RPC rates before handing them over to the appropriate 
Lustre filesystem Metadata and Object Storage Server threads

▪ A Token Bucket Filter (TBF) policy is the method that Lustre has implemented for 
throttling control

▪ Lustre provides internal information, that with new modifications, will be able to 
provide us with easy UID/GID information on ’bad users’

3



4

Client 1

R
P

C
 IO

 tra
n

sa
ctio

n
 c

a
lls

Client 3

Client 4

Client 5

Client 1

Client 6

Client 7

Client 2

Client 2

Client 1

Client 1

Client 1

Client 1

Client 1

Client 1

Network 
Request 
Scheduler

MDT

or

OST

CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE



5

CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE



LEVERAGING TOKEN BUCKET FILTER TYPES
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• NID

▪ We can throttle user transactions by limiting the RPC communication transaction 
rates available to all Lustre network connected users, by IP Range.  This sets up a ‘base 
rate’, an expectation of a normal TBF rate for the filesystems.
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EXPERIMENTAL TOKEN BUCKET FILTER IMPLEMENTATION RESULTS
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Sandia Production filesystem 
and testbed Lustre FS

Sandia Production FS



LEVERAGING TOKEN BUCKET FILTER TYPES
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• JOBID/UID

▪ We can additionally throttle user transactions by limiting the RPCs available to ‘bad’ 
users, by the user Kerberos name

Bad Client 1

Throttled Tokens/s

Normal Client 2

Normal Tokens/s

LEVERAGING TOKEN BUCKET FILTER TYPES



LEVERAGING TOKEN BUCKET FILTER TYPES
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• NID

▪ We can throttle user transactions by limiting the RPCs available to ‘bad’ users, by the 
user Client Server Address

Bad Client 1

Throttled Tokens/s

Normal Client 2

Normal Tokens/s
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LEVERAGING TOKEN BUCKET FILTER TYPES
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LEVERAGING TOKEN BUCKET FILTER TYPES

• JOBID/UID

▪ We can additionally prioritize user transactions by increasing the RPCs available to 
priority users, by the user Kerberos name

Priority Client 1

Increased Tokens/s

Normal Client 2

Normal Tokens/s
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BAD USER IDENTIFICATION TELEMETRY FROM LUSTRE

14
14

• The Lustre filesystem is falling over.

▪ How do we find the bad user that we want to throttle?

▪ Lustre provides us with run-time telemetry that we can use

▪ Next:  We are working on identification scripts that allow us to quickly gather the IP 
address(es) of the bad user(s) and the bad job IDs

⎼ IP address

⎼ Running RPC transaction count so that we can sort out the bad batch job(s)

⎼ Type of transaction read?, write? Metadata types?

HPC 1

HPC 2

?



BAD USER IDENTIFICATION TELEMETRY FROM LUSTRE
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• What is missing is the UID/GID of the bad IO customer that we 
can quickly recover at the MDS and OSS server NRS.

• New code is being developed for Lustre, to be placed into the Lustre code tree

▪ Will provide am streamlined UID/GID association for Bad IO Customers

▪  <UID> <RPC Quantity> <NID address> <Read/Write>

⎼ This information is not currently provided in Lustre

▪ This information will allow us to work towards automatically throttling and 
unthrottling Bad Users



SCHEDULING RPC TRANSACTIONS
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▪ Lustre is set up with a FIFO RPC scheduling algorithm.  There is Round Robin 
capabilities that can be implemented to provide better fair-share and provide some initial 
mitigation to user-based DoS.

⎼ Simple, because you satisfy the Lustre transactions, one-at-a-time

⎼ Not optimal for our shared filesystems situation because a single user can more easily ‘bog’ down each 
server

Client 1Client 2



SCHEDULING RPC TRANSACTIONS
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• Client Round Robin by NID (CRRN)

▪ Other clients will be able to get something done with their file IO when a specific user is 
flooding the Lustre server with IO

▪ Each Lustre set of RPC transactions is executed by the servers by NID, as a RPC 
transaction ‘Quantum’ determined by a set quantity of RPC transactions

▪ After each Quantum, the next client gets access to the server.  

▪ Round-Robin Client IO scheduling and Token Bucket Filters, at the same time

Client 1
Client 2

Client 3

Client 4Client 2
Client 3

Client 4

Client 1Client 1



SPECIAL THANKS AND QUESTIONS

• Chuck Ritter (DDN), Andreas Dilger (Whamcloud), James Simmons (ORNL)

• Questions?
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