
E xc e pt i ona l ser v i c e i n t he na t i ona l i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

E xc e pt i ona l ser v i c e i n t he na t i ona l i n te re s t

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for

the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SANDIA LABS LUSTRE FILESYSTEM CUSTOMER IO DOS
MITIGATION USING NRS TOKEN BUCKET FILTERS

Michael Aguilar, Jason Peters

Using Built-In Token Bucket Filter and Scheduling features of
Lustre FS

File Storage Team, HPC Systems

Sandia National Labs, Albuquerque, NM 87114

SAND2025-01482C

PROBLEM---CURRENT SHARED FILESYSTEM ISSUE

2

• Scratch filesystems are shared between several users and HPC machines, on Sandia’s internal
HPC networks

• One ‘bad’ batch run can create an IO load issue on the Lustre Filesystems and load down the
MDTs and OSTs.

• A method for throttling communications to the filesystems, for bad applications, could be
advantageous to us, as it could help to reduce the scratch filesystem outages.

▪ Our goal is to reduce the impact that any single batch job can have on a shared
filesystem

▪ We want to be able to make it so the filesystem can respond to all of the users

▪ We want to protect the filesystem from ‘falling over’.

CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE

• We can leverage a couple of tools within Lustre to maintain some user control of Lustre
Server access.

▪ Lustre operates the transactions, with client applications, with Remote Procedure Calls
(RPC)

▪ In order to maintain filesystem transactional control of the RPCs, Lustre has a ‘Network
Request Scheduler’ (NRS) that gets the RPC requests, in parallel, from all of the running
batch jobs, on all of the HPC systems

▪ The NRS is able to throttle the RPC rates before handing them over to the appropriate
Lustre filesystem Metadata and Object Storage Server threads

▪ A Token Bucket Filter (TBF) policy is the method that Lustre has implemented for
throttling control

▪ Lustre provides internal information, that with new modifications, will be able to
provide us with easy UID/GID information on ’bad users’

3

4

Client 1

R
P

C
 IO

 tra
n

sa
ctio

n
 c

a
lls

Client 3

Client 4

Client 5

Client 1

Client 6

Client 7

Client 2

Client 2

Client 1

Client 1

Client 1

Client 1

Client 1

Client 1

Network
Request
Scheduler

MDT

or

OST

CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE

5

CURRENT LUSTRE FILESYSTEM INFRASTRUCTURE

LEVERAGING TOKEN BUCKET FILTER TYPES

6

• NID

▪ We can throttle user transactions by limiting the RPC communication transaction
rates available to all Lustre network connected users, by IP Range. This sets up a ‘base
rate’, an expectation of a normal TBF rate for the filesystems.

6

base_rate=< >

Tokens/sec

Preset
experimentally
gathered value

EXPERIMENTAL TOKEN BUCKET FILTER IMPLEMENTATION RESULTS

7

Sandia Production filesystem
and testbed Lustre FS

Sandia Production FS

LEVERAGING TOKEN BUCKET FILTER TYPES

8

8

Limits to the Base Rate

Gateways

Gateways

Gateways

Gateways

Large number of requests,
from a large number of

compute nodes, on a single
HPC cluster, or a set of HPC
Clusters can still overload

a single stripe with IO

Same Stripe

OST

9
9

• JOBID/UID

▪ We can additionally throttle user transactions by limiting the RPCs available to ‘bad’
users, by the user Kerberos name

Bad Client 1

Throttled Tokens/s

Normal Client 2

Normal Tokens/s

LEVERAGING TOKEN BUCKET FILTER TYPES

LEVERAGING TOKEN BUCKET FILTER TYPES

10
10

• NID

▪ We can throttle user transactions by limiting the RPCs available to ‘bad’ users, by the
user Client Server Address

Bad Client 1

Throttled Tokens/s

Normal Client 2

Normal Tokens/s

11

11

LEVERAGING TOKEN BUCKET FILTER TYPES

11

Limits to the Base Rate

Gateways

Gateways

Gateways

Gateways

The Bad Client has a large
number of requests, from

a large number of
individual compute

nodes, on a single HPC
cluster, or a set of HPC

Clusters are now throttled
per User. This means that

if the client has jobs
running on all connected
compute nodes on all of

the HPC clusters, he is still
limited to the same

quantity of Tokens and
will still be throttled.

Same Stripe

OST

OST

OST

OST

Normal Clients still use
the same Base Rate of

Tokens/Sec. Other users
still have the usual access

to the filesystem

12
12

LEVERAGING TOKEN BUCKET FILTER TYPES

• JOBID/UID

▪ We can additionally prioritize user transactions by increasing the RPCs available to
priority users, by the user Kerberos name

Priority Client 1

Increased Tokens/s

Normal Client 2

Normal Tokens/s

13

Turn on
base_line

TBFs and set
them

Query
TBF

status

Turn off
TBFs

Alter
the TBF
settings

Throttle a
bad

customer

Prioritize
a

customer

MIDDLEWARE

Lustre Network Resource Scheduler Controls
Round
Robin

TBFs Telemetry

Identify Bad
User by UID

Throttle Bad
User by UID

Release Bad
User by UID

Initial Base Settings
for Gateways

Operations Front-End Controls

LEVERAGING TOKEN BUCKET FILTER TYPES

BAD USER IDENTIFICATION TELEMETRY FROM LUSTRE

14
14

• The Lustre filesystem is falling over.

▪ How do we find the bad user that we want to throttle?

▪ Lustre provides us with run-time telemetry that we can use

▪ Next: We are working on identification scripts that allow us to quickly gather the IP
address(es) of the bad user(s) and the bad job IDs

⎼ IP address

⎼ Running RPC transaction count so that we can sort out the bad batch job(s)

⎼ Type of transaction read?, write? Metadata types?

HPC 1

HPC 2

?

BAD USER IDENTIFICATION TELEMETRY FROM LUSTRE

15

• What is missing is the UID/GID of the bad IO customer that we
can quickly recover at the MDS and OSS server NRS.

• New code is being developed for Lustre, to be placed into the Lustre code tree

▪ Will provide am streamlined UID/GID association for Bad IO Customers

▪ <UID> <RPC Quantity> <NID address> <Read/Write>

⎼ This information is not currently provided in Lustre

▪ This information will allow us to work towards automatically throttling and
unthrottling Bad Users

SCHEDULING RPC TRANSACTIONS

16

▪ Lustre is set up with a FIFO RPC scheduling algorithm. There is Round Robin
capabilities that can be implemented to provide better fair-share and provide some initial
mitigation to user-based DoS.

⎼ Simple, because you satisfy the Lustre transactions, one-at-a-time

⎼ Not optimal for our shared filesystems situation because a single user can more easily ‘bog’ down each
server

Client 1Client 2

SCHEDULING RPC TRANSACTIONS

17

• Client Round Robin by NID (CRRN)

▪ Other clients will be able to get something done with their file IO when a specific user is
flooding the Lustre server with IO

▪ Each Lustre set of RPC transactions is executed by the servers by NID, as a RPC
transaction ‘Quantum’ determined by a set quantity of RPC transactions

▪ After each Quantum, the next client gets access to the server.

▪ Round-Robin Client IO scheduling and Token Bucket Filters, at the same time

Client 1
Client 2

Client 3

Client 4Client 2
Client 3

Client 4

Client 1Client 1

SPECIAL THANKS AND QUESTIONS

• Chuck Ritter (DDN), Andreas Dilger (Whamcloud), James Simmons (ORNL)

• Questions?

18

	Default
	Slide 1: Sandia Labs Lustre Filesystem Customer IO Dos mitigation using NRS Token Bucket filters
	Slide 2: Problem---Current Shared Filesystem Issue
	Slide 3: Current Lustre Filesystem infrastructure
	Slide 4: Current Lustre Filesystem infrastructure
	Slide 5: Current Lustre Filesystem infrastructure
	Slide 6: Leveraging Token Bucket Filter Types
	Slide 7: Experimental Token Bucket Filter Implementation Results
	Slide 8: Leveraging Token Bucket Filter Types
	Slide 9: Leveraging Token Bucket Filter Types
	Slide 10: Leveraging Token Bucket Filter Types
	Slide 11
	Slide 12
	Slide 13: Leveraging Token Bucket Filter Types
	Slide 14: Bad User Identification telemetry from Lustre
	Slide 15: Bad User Identification telemetry from Lustre
	Slide 16: Scheduling RPC transactions
	Slide 17: Scheduling RPC transactions
	Slide 18: Special Thanks and questions

