Fujitsu Contributions to Lustre*
High Performance Data Division

Oleg Drokin
April 16, 2013

* Other names and brands may be claimed as the property of others.
Network jitter: Doing away with pings

- On large systems pings are expensive:
 - Clients * targets pings every `obd_timeout/4` interval (default 25 sec)

- Main purposes of pinging:
 - Lets clients detect restarted/recovering servers in reasonable time
 - Proactively weeds out unreachable/dead clients

- With Imperative Recovery we’ve got #1 covered

- Many existing systems already know about dead clients from cluster management tools
 - Lustre provides a way for those systems to tell it about dead clients for immediate eviction

- Now servers have a way to tell clients to avoid idle pinging
LNet routes hashtable

- It was noticed that LNet stores routing entries in a linked list.
- As number of routes increases on large systems, iterating the list becomes more and more expensive.
- Hash table is a pretty natural solution to this problem.
Limiting OS jitter – ld1m_poo1d

- On FS with 2000 OSTs ld1m_poo1d was using 2ms of cpu every second on every client
 - Investigations revealed it was walking a linked list of all ld1m namespaces (one per connected service) every second to update lock stats

- The lock statistics on empty namespaces do not change
 - So no need to walk empty namespaces at all

- An updating action is performed every 10 seconds on clients
 - So no need to wake up every second, just see how much time left till next action and sleep this much

- A lot of the calculations don’t need to be periodic and could be predicted, making ld1m_poo1d pointless (TBD)
SPARC* architecture support

- SPARC architecture is big-endian
 - Fujitsu performed a full Lustre* source audit for endianness issues and contributed the results back to the community

- SPARC Linux has “different” error numbers (Solaris* compatible)
 - This highlights a bigger problem of assuming the error numbers being compatible on different nodes in network which is not true.
 - Fujitsu came with an errno translation table solution that it contributed back to community
 - Intel is working on integrating this solution into 2.x releases

- Fujitsu also contributed access to a SPARC system test cluster
Memory usage improvements

- `/proc` statistics on clients tends to use a lot of RAM
 - Esp. if you have thousands of targets connected, it could use hundreds of megabytes

- Fujitsu developed and contributed a way to disable such statistic tracking
 - Being adopted by Intel for inclusion into Lustre 2.x
More fine-grained control of striping

- Current Lustre striping of “starting at X, Y wide” is not always adequate

- Fujitsu developed and contributed code to allow very-fine-grained stripe allocation on per-OST basis
 - This is currently being adopted by Intel into inclusion into Lustre 2.x

- Additionally, assumption about contiguous OST numbering is also removed which would allow for flexible OST-numbering schemes