Reims
France

2014

AN _ D
DEVELOPERS SUMMIT ~B ll

an atos company

MDT multiple slots for reply
reconstruction /

2014/09/24 | Grégoire PICHON

Parallel File Systems

Extreme Computing R&D

Single client metadata performance issue

© Bull, 2014

MDT is able to handle one modify RPC at a time per client
@ one slot per client in the MDT last_rcvd file

@ slotis used to save the state of the last transaction

@ reply can be reconstructed in case of RPC resend

MDC requests are serialized

single client performance of metadata operations is low
@ all modify operations (creation, unlink, setattr, ...)
@ "read" operations are not concerned (stat, lookup, readdir, layout)

tracked through LU-5319
experimental patch from Alexey Zhuravlev

Single client metadata performance issue /

MDTEST - directory per process
lustre 2.5.60 - single client - file creation

25000 v
20000 -
a 15000 - =@=standard
= ——fail_loc=0x804

10000
5000 #L‘ e o o —— patch #9871

=== multi-mount

O T T T T T 1
0 4 8 12 16 20 24
tasks

10ps

MDTEST - directory per process
lustre 2.5.60 - single client - file removal

25000
20000 —7% ; :
15000 / =@=standard
10000 =fi—fail_loc=0x804
= e
5000 # patch #9871
=== multi-mount

0

0 4 8 12 16 20 24
tasks

fail_loc=0x804 : bypass the mdc request serialization

patch #9871 : Alexey Zhuravlev's experimental patch that support multiple MDT slots

multi-mount : fs is mounted several times on the node

© Bull, 2014

Solution Requirements /

as described in solution architecture document
@ improve single client metadata performance
® allow MDT to handle several modify metadata requests per client in parallel
@ ensure consistency of MDT operations and reply data on disk
@ client/server full compatibility
- nodes that support and do not support the feature
@ upgrade and downgrade support
- for Lustre client
- upgrade only for MDS

© Bull, 2014

MDT connection

| obd connect data

@ OBD_CONNECT_MULTIMDRPCS flag
indicates support of multiple modify metadata RPCs in parallel

@ ocd_maxmdrpcs
specifies the maximum number of modify metadata RPCs in parallel

1. connect request
ocd flag, desired value

MDC MDT

2. connect reply
ocd flag, adjusted value

N

© Bull, 2014

Client side /

client obd

@ cl_max_md_rpcs_in_flight

maximum number of modify metadata RPCs in parallel

tunable before connection using 'Ictl set_param mdc.xxx.max_md_rpcs_in_flight=yyy"

cannot exceed cl_max_rpcs_in_flight

adjusted during connection phase with MDT
- default value is 8
@ cl_md_rpcs_in_flight
current number of modify metadata RPCs in flight
@ cl_md_rpcs_waitq
wait queue for threads when max is reached
® cl_md_rpcs_bitmap
if modify metadata RPCs needs to be tagged, bitmap of tags in use by in flight RPCs

allow 1 more RPC in flight above max for CLOSE request

a modify metadata request handled by the MDT might trigger lock cancellation. This can
require a close request to be sent from the same client.

© Bull, 2014

Server side : tunable

limit maximum modify metadata RPCs in flight per client
@ to avoid a client to overflow the MDT

@ kernel module parameter: max_md_rpcs_in_flight_per_client
read-write tunable
effective for new client connections

© Bull, 2014

Server side : on-disk data /

reply_log file, in addition to last_rcvd file

@ does accessing continuously the same file at the same place could become a
performance issue ?

© Bull, 2014

last_rcvd reply log
server data) header
| structlsd client data 4| on-disk reply data
< | uuid
padding repIy slot ;c(:znsno
last_transno
)) result %

clientl data last_xid reply slot data

. last_result * pre_versions
client2 data last_data reply slot

pre_versions = | client_idx

| tag
last_close_transno k

last_close_xid
last_close_result
last_close_data

last_epoch

i first_epoch * info for reply

reconstruction

Server side : in-memory data

/

© Bull, 2014

target

struct lu target
last_rcvd dt_object

client_bitmap

reply_log dt_object
reply_bitmap

target export

reply data

/IIIIIIIIIIIIIIIII

saneciIIEENNNRENNEEEN

struct tg export data

index in last_rcvd
uuid

transno
last_epoch

reply list

in-memory reply data

bitmap of used client area in last_rcvd file
- one area for each connected client

bitmap of used slots in reply_log file
- extends dynamically
- allocated by group of 1M slots

list
index in reply_log
on-disk reply data

@ allocated when MDT request is handled

@ freed when server knows client received the reply

- reply ACK is received from client
- metadata RPC tag is reused by the client for another request
- embed in messages the last xid of reply received by the client

> reply data > replydata —>

Metadata request flow

1. prepare a modify metadata RPC
check modify md RPC in flight (might wait)

select a tag

check RPC in flight (might wait)

© Bull, 2014

6. release the tag

2. request (xid, tag)

5. reply (xid, tag, transno

7. reply ACK (xid, tag)

3. handle request
allocate reply data
reserve slot in reply_log

8. free reply data
release slot in reply_log
i
i
10. update last committed
i
i

4. launch disk transaction
- mdt request modifications
- reply data in reply_log

9. transaction committed

10

Metadata request flow: reply lost

1. prepare a modify metadata RPC
check modify md RPC in flight (might wait)

select a tag

check RPC in flight (might wait)

© Bull, 2014

2. request (xid, tag)

request RESEND (xid, tag)

reply (xid, tag, transno

3. handle request
allocate reply data

reserve slot in reply_log 4. launch disk transaction

: - mdt request modifications
! - reply data in reply_log

1

1

1

i

i

i

reply is reconstructed
from reply data

11

Metadata request flow: server crash

1. prepare a modify metadata RPC :
check modify md RPC in flight (might wait) i
select a tag !

check RPC in flight (might wait) :

; a

1

2. request (xid, tag)

3. handle request
allocate reply data

i
i
1
i
[reserve slot in reply_log
1
i
i
i
6. release the tag

5. reply (xid, tag, transno
1

i 7. reply ACK (xid, tag)

' 8. free reply data
@ servercrash 1 release slot in reply_log

- nothing was written on disk
- replay request is handled normally
@ server crash 2
- reply data is reloaded in memory from reply_log file

- replay request is handled with reply reconstruction

© Bull, 2014

4. launch disk transaction
- mdt request modifications
- reply data in reply_log

9. transaction committed

12

