
1 © Bull, 2014

2014/09/24 Grégoire PICHON

Parallel File Systems

Extreme Computing R&D

MDT multiple slots for reply
reconstruction

DEVELOPERS SUMMIT

2 © Bull, 2014

Single client metadata performance issue

MDT is able to handle one modify RPC at a time per client

one slot per client in the MDT last_rcvd file

slot is used to save the state of the last transaction

reply can be reconstructed in case of RPC resend

MDC requests are serialized

single client performance of metadata operations is low

all modify operations (creation, unlink, setattr, ...)

"read" operations are not concerned (stat, lookup, readdir, layout)

tracked through LU-5319

experimental patch from Alexey Zhuravlev

3 © Bull, 2014

Single client metadata performance issue

0

5000

10000

15000

20000

25000

0 4 8 12 16 20 24

IO
p

s

tasks

MDTEST - directory per process
lustre 2.5.60 - single client - file creation

standard

fail_loc=0x804

patch #9871

multi-mount
0

5000

10000

15000

20000

25000

0 4 8 12 16 20 24

IO
p

s

tasks

MDTEST - directory per process
lustre 2.5.60 - single client - file removal

standard

fail_loc=0x804

patch #9871

multi-mount

fail_loc=0x804 : bypass the mdc request serialization

patch #9871 : Alexey Zhuravlev's experimental patch that support multiple MDT slots

multi-mount : fs is mounted several times on the node

4 © Bull, 2014

Solution Requirements

as described in solution architecture document

improve single client metadata performance

allow MDT to handle several modify metadata requests per client in parallel

ensure consistency of MDT operations and reply data on disk

client/server full compatibility

– nodes that support and do not support the feature

upgrade and downgrade support

– for Lustre client

– upgrade only for MDS

5 © Bull, 2014

MDT connection

obd connect data

OBD_CONNECT_MULTIMDRPCS flag
indicates support of multiple modify metadata RPCs in parallel

ocd_maxmdrpcs
specifies the maximum number of modify metadata RPCs in parallel

MDC MDT

1. connect request
ocd flag, desired value

2. connect reply
ocd flag, adjusted value

6 © Bull, 2014

Client side

client obd

cl_max_md_rpcs_in_flight

– maximum number of modify metadata RPCs in parallel

– tunable before connection using 'lctl set_param mdc.xxx.max_md_rpcs_in_flight=yyy'

– cannot exceed cl_max_rpcs_in_flight

– adjusted during connection phase with MDT

– default value is 8

cl_md_rpcs_in_flight

current number of modify metadata RPCs in flight

cl_md_rpcs_waitq

wait queue for threads when max is reached

cl_md_rpcs_bitmap

if modify metadata RPCs needs to be tagged, bitmap of tags in use by in flight RPCs

allow 1 more RPC in flight above max for CLOSE request
a modify metadata request handled by the MDT might trigger lock cancellation. This can
require a close request to be sent from the same client.

7 © Bull, 2014

Server side : tunable

limit maximum modify metadata RPCs in flight per client

to avoid a client to overflow the MDT

kernel module parameter: max_md_rpcs_in_flight_per_client

read-write tunable

effective for new client connections

8 © Bull, 2014

Server side : on-disk data

reply_log file, in addition to last_rcvd file

does accessing continuously the same file at the same place could become a
performance issue ?

last_rcvd reply_log

header
struct lsd_client_data
uuid

last_transno
last_xid
last_result
last_data
pre_versions

last_close_transno
last_close_xid
last_close_result
last_close_data

last_epoch
first_epoch

on-disk reply data
transno
xid
result
data
pre_versions

client_idx
tag

reply slot

reply slot

reply slot

server data

padding

client1 data

client2 data

* info for reply
reconstruction

*

*

9 © Bull, 2014

Server side : in-memory data

target

target export

reply data

allocated when MDT request is handled

freed when server knows client received the reply

– reply ACK is received from client

– metadata RPC tag is reused by the client for another request

– embed in messages the last xid of reply received by the client

in-memory reply data
list
index in reply_log
on-disk reply data

reply data reply data

bitmap of used slots in reply_log file
- extends dynamically
- allocated by group of 1M slots

bitmap of used client area in last_rcvd file
- one area for each connected client

struct lu target
last_rcvd dt_object
client_bitmap

reply_log dt_object
reply_bitmap
...

struct tg export data
index in last_rcvd
uuid
transno
last_epoch
reply list
...

10 © Bull, 2014

Metadata request flow

MDC MDT

1. prepare a modify metadata RPC
check modify md RPC in flight (might wait)

select a tag
check RPC in flight (might wait)

2. request (xid, tag)

3. handle request
allocate reply data

reserve slot in reply_log

disk

4. launch disk transaction
- mdt request modifications

- reply data in reply_log
5. reply (xid, tag, transno)

6. release the tag

7. reply ACK (xid, tag)

8. free reply data
release slot in reply_log

9. transaction committed

10. update last committed

11 © Bull, 2014

Metadata request flow: reply lost

MDC MDT

1. prepare a modify metadata RPC
check modify md RPC in flight (might wait)

select a tag
check RPC in flight (might wait)

2. request (xid, tag)

3. handle request
allocate reply data

reserve slot in reply_log

disk

4. launch disk transaction
- mdt request modifications

- reply data in reply_log

request RESEND (xid, tag)

reply is reconstructed
from reply data

reply (xid, tag, transno)

reply lost

12 © Bull, 2014

Metadata request flow: server crash

MDC MDT

1. prepare a modify metadata RPC
check modify md RPC in flight (might wait)

select a tag
check RPC in flight (might wait)

2. request (xid, tag)

3. handle request
allocate reply data

reserve slot in reply_log

disk

4. launch disk transaction
- mdt request modifications

- reply data in reply_log
5. reply (xid, tag, transno)

6. release the tag

7. reply ACK (xid, tag)

9. transaction committed

server
crash 1

server
crash 2

server crash 1

– nothing was written on disk

– replay request is handled normally

server crash 2

– reply data is reloaded in memory from reply_log file

– replay request is handled with reply reconstruction

8. free reply data
release slot in reply_log

