VERSION-BASED RECOVERY HLD

PETER BRAAM, MIKE PERSHIN

1. REQUIREMENTS

(1) A server only replays a client update request when thetgpaffects exactly the same versions of objects as it ditlen t
original execution.
(2) Aclientis guaranteed that all information that it hasaded from the server is present after recovery.

2. FUNCTIONAL SPECIFICATION

2.1. Current operation - all client, all transaction recovery. Currently Lustre meets requirements 1 & 2 by requiring adirdis to
replay all available transactions in exactly the same oadéhe original execution before any other requests araigegc

Additionally the server only allows clients to recover dgria specified period. If any one client doesn’t connect tesdrger during
the period,

(1) recovery will abort and
(2) all clients will be evicted at recovery time and
(3) any client connecting after the recovery window closékhe evicted when it tries to reconnect.

In some cases, e.g. Catamount or after long disconnectibests can’t send requests to server in time, in such casesoa is
guaranteed.

2.2. Version based recovery. The two requirements will be met if

(1) During replay of requests version-based recovery Walaaclients to replay if and only if the objects the clientising have
exactly the same version as during the original execution.

(2) After replay, recovery can complete successfully if dagaclientsobtained from servers before recovery is assured to be
present and not to have rolled back. A key issue, subjectlioyge if, clientdesignates thelient Lustre file systeror client
applicationsusing the file system.

If both conditions can be met jobs can continue without etrtiithe conditions cannot be met, eviction will be the narreault, but
more relaxed recovery options can be made available to it cl

2.2.1. Definitions:

epoch:: boot cycle sequence number

version:: {epoch, transno} pair labeling objects (MDT inodes, OST objects). Versierthanged to mark the modification of
object. Not any modification produces version change, éanging of time or size.

preop-version:: the version of the inodes when it has just been locked beffi@eperation.

postop-version:: the version of the inodes as set by the operation.

version-based recovery:: replays will be done with version checking.

primary recovery stage:: first recovery stage, when server waits for all clients tmreect and tries to replay them in trans-
action order (used now as only recovery way)

delayed recovery stage:: recovery of clients which weren’t able to reconnect in timel doing that later.

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

2.2.2. Summary of version-based replay.

(1) The server records the last transaction number it has eegéoit each client transactionally on disk in last_rcvd. ket
reconnecting at any time can be told what requests it shepldy and which it should discard.

(2) the client allocates an extra space in the reply buffer oftirpc_request (reg->rg_repmsg’) to store the versidiat are
related to the request.

(a) note: such information is also useful fando operations.

(3) The server collects the preop versions during request psotgand sends these versions along with normal reply sthina
client can send these versions to the server during replay.

(a) NOTE: Due to the frequent use of LOOKUP IBIT locks, which da pmtect the version of an inode, the client normally
doesn’t know the pre-op versions when originally execuéingperation.

(4) when the client connects to the server for recovery, thesserill recognize is it the primary recovery phase or the geth
recovery is needed and what the client last committed nuisber

(5) during replay client sends the requests with a transno tiftelast committed transno to the server.

(6) during replay client will send the pre and post operatiorsiogrs to the server along with normal request message. Pre-
version is used for version checking and postop versionbgilstored as new one.

(7) during replay the server will attempt to execute every rattres client offers, even after it encounters a reintegndailure.

(8) during replay the server checks the objects preop versitordeeplaying a request: server compares the preop veofion
the inode with the preop versions in replay request. If thrsive is compatible, then the replay request will continfigie
versions do not match the request replay will get -EOVERFLOW

Note:
(a) Even after getting this error on a reintegration, the semiprocess subsequent requests in the same manner.
(b) While no gap has been encountered it is not necessary to gkesibns. Though it is not harmful and Lustre can check
versions always but it will fail if old client is connected wh sends no versions.
(c) If a process has an open file handle or active file system lodkvarsions for the inodes do not match, then the client
can optionally kill the process if it receives an -EOVERFLOVéssage.

(9) When finished with replay, client and server check if anyaggailed on any request because of version mismatch. If not,

the client will get a successful reintegration messageviraion mismatch was encountered, the client must be evicte

2.2.3. Last_committed managing:he version recovery differs from normal one in transactitenagement. The problem is that
server's transactions are in new epoch already but old tciigplays are with old epoch’s transactions. The problemois to
determine which replays are committed already. E.g. cliglhstart recovery and will use old transno, but first serast_committed
reported to the client will be bigger than any replays traresnd all replays will be dropped.

The solution is the per-export last_committed value rathan per-obd one.

(1) The commit callback updates export last_committedevaiithe same way as it does for obd last_committed
(2) the server send the last-committed from export in reply
(3) The aborted recovery will restarts correctly becaummtivill get own last_committed value.

2.2.4. Last dependency checkin@he recovery transaction gap problem is that if the replaysace is not complete it is possible
that a client has used information that was generated dthingap and the client can no longer get access to this inf@mmafter
recovery.

There are two approaches to complete correctness to this iss

all transactions, all clients: If it is known that all clients replayed all transactions ietsame order, any gaps present in the
sequence are harmless (they arise from lost replies).

newest client_object beforegap: If a client can report it only had used server data older thanldst transaction before the
first gap in the sequence, then the client cannot have seaithddtwas lost. This is best verified by the client rememlgerin
not the last transaction number, but the version of newest bibjexer obtained from the server - if that object is from befo
the first gap, the client is not depending on any informatost in a gap.

Another approach can guarantee that the client file systéarimthe client kernel does not contain any information thas generated
and lost corresponding to a certain gap.

cached objectsnewer than gap correct: The client verifies that all objects in its cache newer thanfitst gap have exactly
the same version on the client and the server

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

The problem with this approach is that, while the file systetadn the client is consistent with what the server has,eeaalries
may have been present on the client in the past. If these werkand eliminated prior to checking this version, the thgplications
have used data that was lost on the server. Such applicatiapgven have exited altogether already. Such cache puagdmppen
before the server failed and also while the client was wgitinreconnect cached data that was used could be purged ftacha.

A weaker check can still guarantee a file system that is camgibetween a client and a server - the client purges allathaache
entries and then performs:

Used cache aobjects newer than gap correct: All objects in the cache that are in use have the correctmersi

Note that killing processes can assist with this conditmhé satisfied.

The following summarizes the algorithm:

(1) The server maintains a persistent record of the lass#éiaion before the first gap during primary recovery. Notic the
gap can shrink during delayed recovery. Such updates wiktberded transactionally.

(2) When all clients are connected in normal mode or when @nadpr chooses, the earliest gap information can be cleared

(3) Every client maintains the last transaction that theesereported as executed during normal processing and ts®xeof
the newest object the client has ever obtained from the serve

(4) When the replay has completed, the server and client acrhe transaction on the first gap and the newest version the

client has seen. If the newest version is earlier than thiegiiyg, the client is up to date. This leadsutl node recovery

(5) If thegap closed during delayed recovery but not all clients have reconnected, further delayed recovery uses version
checking. The client then compares each of its cached objects newettlledfirst gap with server versions. If the servers
are equal or newer the client can completely recovery. Bhisiiledfull file system recovery.

(6) Finally the client can purge its cache and repeat theipue\step for the cached objects that are in use. If this testeed
the client performsveak file system recovery.

(7) Optionally the client can request eviction if full node recovery or filé# system recovery cannot succeed.

(8) Optionally - If the client can record in each process what the newest bisjélcat the process may have depended on in a

system call, then the client can determine which proces®es $een stale data, although processes may have exitadyalre
and seen stale data. Optionally all processes that havest#erdata could be killed.

2.2.5. Summary of reintegration possibilitiett seems that reintegration can go through increasinglyeresteps, all of which are
important and interesting. Only the first 2 are required ststage, 3-5 will be mandatory when writeback caching asdafinected
operation is introduced later.

(1) when all clients are present we have guaranteed corretegeation from the application perspective. (current fiomality)

(2) when there is delayed recovery with full reintegration ghe last dependent transaction falls before the first gagetthe
same.

(3) when there is delayed recovery with full reintegrationd &ersions are correct we have full file system recovery

(4) if there is no export we have no last_rcvd information frora thient, so the client doesn’t know where to start replay. We
can try to reintegrate but likely many re-integrations Vdlil on version mismatch. However, if at any point during the
reintegration we see that the client request pre-op verwidhe client reply post-op version equals that of the sethart
means that for that inode reintegration can succeed. Liédelne transactions we tried to reintegrate before thisdd@mn
held were committed on the server, the ones after were naloThis one would need to retain a list of inodes on the client
that have seen conflicts during replay; items on the list @acléared by the client from the list if one of the conditioresw
met. This can be followed by a version check as above. Whderttically interesting, it is very cheap for the server to
retain a persistent client export, even for millions of ut®, so retrying transactions without the last receiveal®adge is
probably not so valuable.

(5) If clients get persistent caches the validation routinélvétome very expensive - possibly millions of inodes needraion
check. This can be made efficient: the sub-tree change tidsevdth traversal of a tree. The client descends through the
cache and only when the cache change time is different fremséhver does the sub-tree need further validation. These
subtree change times act as persistent memories for a ackdock: if they didn’t change, nobody used a write lock in a
sub-tree to change an object in the sub-tree. But they attg &ipensive to update - every inode in the path to a modified
inode would get a subdir ctime change.

(6) Optimistic reintegration of clients facing conflicts is @igery interesting. Operations can continue as long as neusgm
conflicts are found. For example a file creation can be repl#the name was not created by another client, _and_ if the
permissions on the ancestor directories were no changeslCotla literature discusses a full set of conflict conditimns

3

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

this case (but the AFS/Coda authorization mechanism isigiran ACL just on the parent, not on the ancestors to the root
of the FS). User interaction is probably needed to clear ¢tindlicts.

2.2.6. Inode version dataThis isserver maintainegbair {epoch, transaction}. Epoch is boot sequence numhbanshaction is the
last one which the object was involved in. The comparisorhefiersions of two different inodes is meaningful. Highepdeh,
transno} means latest version of the object on current serve

2.2.7. Setting the new versiorthe new version is set when transaction is assigned for teeatipn and is written into last_rcvd
file. Right before setting new version the old one should vedas preop version in reply. This is important for pareréapry
mostly because it can be used by several threads at once gdidps feature, therefore the only way to get correct prepion is
reading it right before writting the new one because thatimbzed.

2.2.8. Request structuresAll request structures will have room for pre-op and postregsions of 1-4 inodes (4 are required for a
rename that is clobbering another inode). Metadata regjuébe structured in such a way that they contain full restformation
including version checking, and have all information regdifor undo.

2.2.9. Reply structuresAll replies for requests will include the pre- and post-opsiens.
2.2.10.Resend Last_rcvd should keep preop version. Reconstruct reselhdseiit to restore reply properly

2.2.11. Versions after reconnectfter rebooting the server starts new epoch with transastgiarted from 1. This way allows to
don’t know the last used transaction before recovery angeseloesn’t depend on disconnected clients.

2.2.12. Assigning version upon delayed replaye should still have separate transaction field in reply agmaith pre-op version
and post-op version. Post-op sets new version and traoeastiransaction of operation. In case of delayed recovemjllibe new

transaction in new epoch. Therefore we will be able to checkroitted request on client, and able to replay it again itleedn new
epoch, but versions are preserved. So transno is used kaémueest state(committed or no) and for recovery, but gars updated
from postop version.

2.2.13. ptlrpc_check_dependency(struct lustre_import This function returns -EOVERFLOW unless one of the follogvia true:

e the server has replayed all transactions before the lastacsion the client depended on OR
e all clients were present during recovery

When this function is called the state of the recovery camgbhdodependency_mismatch

2.2.14. ptlrpc_recovery_success(struct lustre_import This function returns success unless the state of the ingpestport is:

e dependency_mismatch OR
e reintegration_failed

3. STATE MANAGEMENT

3.1. Epoch management. The epoch controls what clients should participate the medovery. The following rules are used for
epoch management:

e Epochisincreased upon every server boot cycle when regevels.
e Any client with epoches older than last one are not include@covery and marked as delayed.
e The every connected client writes current epoch in clietd dalast_rcvd file when completes recovery.

3.2. Main recovery changes. Main recovery phase is not ended if some client(s) miss mgowindow. Instead of eviction the
other clients continue to recover with version-based reppv

the recovery is timed out

for missed client as exp_delayed = 1;

continue recovery with VBR (obd->obd_version_recov = 1)
every client with version mismatch is evicted when finishexorery

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

3.2.1. Failure during main recovery (no VBR) he server didn’t update the last epoch yet, so recoveryrasiflart with the same
conditions.

3.2.2. Failure during main recovery (VBR)VBR was turned on so there was gap, i.e. one (or more) cligit'tdtonnect in time.
After failure there are two possible cases:

(1) Missed client will not participate in recovery again.€ldep will be determined again and recovery proceed as biefitrees.
(2) Missed client will connect to server:
(a) client will participate in recovery if its epoch is thensa as server last_epoch or wait for main recovery to comifilete
otherwise
(b) The per-export last_committed will be used to contridrdi replays are needed or committed already.

3.3. Delayed recovery.

(1) Upon connection the last_transno for this client is gotrf last_rcvd file

(2) The last_committed transno is sent to the client.

(3) Client gets its last_committed value and drops old nepénd sends others to server.

(4) Server processed replays with version checking upglam-export last_committed value.

(5) If version mismatches are seen then client is evictethtBgration fails.

(6) Locks are not replayed during delayed recovery as theyealready obsoleted.

(7) If recovery was successfull then client’s epoch is seutwent one. Client is now fully reintegrated.

(8) All normal requests are blocked from execution durinigged recovery to avoid unnessessary conflicts:

(a) to avoid conflicts in case of recovery failure. E.g. ndrreguest uses the same object as was modified during delayed
replay. In case of failure the main recovery replays will elegis on delayed client’s replay. Note: the COS will solve
this as dependent replays will be synchronous;

(b) to increase the possibility of successfull reintegratbecause normal requests may change version of the saaw obj
as delayed client is going to change during replay.

3.3.1. Failure during delayed recovery.
(1) The server is rebooted and read client’s data from legtl.r
(2) The delayed client’s epoch is not yet updated becauserittdinish recovery, so it is excluded from main recoveryndow.
(&) The replays from this client which were done before faildon't affect the replays of other clients because thegqzhs
version-checking and all normal replays were prohibitedrdudelayed recovery.

(3) When main recovery is finished the delayed client is atldwo connect and delayed recovery starts again.
(4) As client has own last_committed value it proceed in s way as before the failure.

3.4. Import recovery changes. Import control the return code from server to see -EOVERFL@Whappens then imp_vbr_failed
is set to show that reintegration fails. The recovery prea@l continue to replay all requests but locks will not b@leyed and
client will be evicted after all.

3.5. Disk format changes. Inode will store version on disk, it is scope of another HLD

3.5.1. Last_rcvd file changestlient_data contains extra data now:

(1) last_epoch this client was seen
(2) pre-versions of last operation

3.6. Wireformat changes. Request and reply structures are changed and contain néidids for all objects involved in operation

5

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

4. Use CASES
4.1. primary recovery steps.

(1) servercompletes its initialization and starts to accepheating request from clients. The server, as before gé@sdnovery
mode if old exports are found.

(2) server waits TIMEOUT+X seconds to allow clients to conn#duse clients which connected with server are deemed to be
normal recovery clients. Each time a client connects thevery connect window is grown up to a maximum value

(3) In the connection handshake the server reports to the elieat the last transaction is that it has committed.

(4) The server begins to receive replay requests from cliehtegitransno of the request is in the right order it continizes
process it.

(5) After a gap is encountered, the server does not proceilcatifreast TIMEOUT+X has elapsed since the last reconrect,
allow other clients to join in and close the gap.

(6) After a gap wait replay continues and version checkingritegration will be used and block or allow the request to be
processed based on its version.

(7) when a client completes its replay successfully it penba dependency check with the server and completes regcover
evicts itself

(8) when server completes recovery all obd_exports for disiconnected clients are retained - they are needed to liad t
last_transaction executed for a client during later replay

4.2. obd_export maintenance. We need to maintain last_committed for not-connected tdisn they can understand what was
committed already. That is why the info about non-conneggatirent should be retained.

(1) Exports for disconnected clients can be cleaned up bgthkedmmand
(2) If aclient at a nid connects with a new UUID any old exp@mn de cleaned up
(3) Perhaps no more than a certain amount of disconnectextexgre retained

4.3. Gap recording.

(1) When encountering a gap, when not all clients are prelerserver will record the gap data with transaction thailisfing
the gap.

(2) Ifall clients are present during recovery and replay ptates the gap information, if present, is cleared

(3) Anlctl command is available to clear gap information

4.4. Issue with permissions. As it's possible to lose some changes security issues aFige.example, user can close access to
subtree /A/B and then create secret file /A/B/C/Dffile. Ifypoeis version of /A/B is lost, then user’s setattr changirgpission can't
apply while nothing prevent secret file creation from repl@jius secret file may be exposed after recovery. As there eheap
way to track dependency in this case we propose two optioakerall requests changing permission synchronous and aewto
make them asynchronous. Actual behavior is controlled rdafs-exportecdync-permissiomariable.

5. LOGIC SPECIFICATION

5.1. Inodeversion life-cycle.

¢ the last transaction of inode and server epoch are used taaimaversions, the modified ext3 is used to store version in
inode.

e add/del entry in directory will update the version of digtinode

e data modification will update the object version with newnsiao and this must match for delayed writes of dirty data to be
allowed; that decision is made at lock replay time.

e when file size, mtime or atime transfers from the OST to the MBETMDT inode version will NOT be updated.

5.2. SETATTR.

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

5.2.1. normal mode.

record preop-version into ptirpc_reply after the inodeiskked

check the COS is needed and do synced operation if so

setattr on the inode, update inode’s version

record postop-version into ptirpc_reply before the inaderilocked

if setattr changes permission bits or uid/gid aydc-permissiomariable is set, then mark transaction synchronous and wait
for commit on the server side

5.2.2. replay mode.

e inode’s version is equal to preop-version, then continyatcess
e else return -EOVERFLOW

5.3. CREATE.

5.3.1. normal mode.

initialize the version of the new created inode after it iskied
get preop-version of the parent inode

update the version of the parentinode

record updated version of parent inode before it is unlocked

5.3.2. replay mode.

e lock the parentinode
e if parentinode’s version matches the preop-version ingpéay request then continue to create and update the childsson
e else return -EOVERFLOW

5.4. LINK.

5.4.1. normal mode.

e record the preop-version of the source inode and the tangettdry inode after it's locked
e update the version of source inode and the target direatoge
e record postop-version of source inode and target diredtaye

5.4.2. replay mode.

o if the version of the source inode and the target directoogénmatch preop-version in the replay request, then caatmu
process
e else return -EOVERFLOW

5.5. UNLINK.

5.5.1. normal mode.

record the preop-version of the parent directory inode hacahild inode
check the COS is needed and do synced operation if so

unlink the child inode and update version of the parent&thibde
record the postop-version of the parent directory inodethadhild inode

5.5.2. replay mode.

o if the preop-version between parent&child inode and repéayiest match, then continue to process
e else return -EOVERFLOW

5.6. RENAME.

VERSION-BASED RECOVERY HLD PETER BRAAM, MIKE PERSHIN

5.6.1. normal mode.

record the preop-version of the two parent inodes, the sdnade and the target inode if it exist after it are locked
check the COS is needed and do synced operation if so

update the version of related parent&child inodes afteratpm

record the postop-version before it are unlocked.

5.6.2. replay mode.

e if the preop-versions match, then continue to process
e else return -EOVERFLOW

5.7. OPEN.

5.7.1. normal mode.

record the preop-version of the directory inode after ibisked

check the COS is needed and do synced operation if so

if the child inode exists, then record its preop-version

if the child inode doesn’t exist, then initialize versiontbé new created inode
if the child is created, then update the version of the dinganhode

5.7.2. replay mode.

e if preop-version match, then continue to process
e else ereturn -EOVERFLOW

5.8. ENQUEUE.

5.8.1. normal mode.

e record the preop-version of related inode after it is locked

5.8.2. replay mode.

e if preop-version match, then continue to process
e else return -EOVERFLOW

5.9. OST_DESTROY.

5.9.1. normal mode.

e store preop-version of the obdo after it is locked

5.9.2. replay mode.

e if preop-version match, then continue to process
e else return -EOVERFLOW

6. ALTERNATIVES

7. FOCUS OFINSPECTION

