a Car.io

Baskin
Engineering

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Increasing Performance Through
Automated Contention Management

W

(Luster Developers Day "16)

Yan Li, Xiaoyuan Lu,

Ethan Miller, Darrell Long
Storage Systems Research Center (SSRC)

Universitygf,Cank)\rniS;LSanta Cruz
(a Intel® Parallel Computing Center)

rc

STORAGE SYSTEMS RESEARCH CENTER

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Challenge: consistent performance at peak times

total throughput

congestion harms efficiency and throughput

>

100
clients

150
clients

e —

200
clients

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Challenge: consistent performance at peak times

asCar..
GSrc

congestion causes fluctuation

80

N o) -
- - -

Throughput (MB/s)
N
-

Client Nodes Throughput

client throughput

5

10 15
Time (second)

L | of a random write
Node 1 | | load
Node 2 workloa
Node 3 |1
Node 4 | 5 nodes accessing
—— Node S 5 servers
20 25

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

The problem we are trying to solve

Improve throughput or fairness during congestion
or both at the same time!

End-to-end coverage
handling congestion at OSC, network, OSS, and OST

Fully automatic and requires little human effort

modern systems are very dynamic, and we won't have time to
create models

ascar.
GSTC 4

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Rate limiting can improve performance
. it done properly

A

o

e

(@)

>

O

<

©

o

100 150 200 clients

aSCar. clients clients cllents with contention

control 5

Challenges o

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

" distributed |/O rate control:

1. Where is tr

rate limit

e sweet spot?

ideal
throughput

real
throughput

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Challenges of distributed |/O rate control:
1. Where Is the sweet spot?

rate limit
is too low >

real Ideal
throughput throughput

asCar..

Challenges o

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

" distributed |/O rate control:

1. Where is tr

e sweet spot?

rate limit

too high

>

ideal
throughput

real
throughput

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Challenges of distributed |/O rate control:
1. Where Is the sweet spot?

sweet rate
limit spot

Capability discovery usually
iInvolves communication:

e between clients

 with a central controller ,
real iIdeal

throughput throughput

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Created by Yan Li <yanli@ascar.io> http://ascar.io

Challenges of distributed |/O rate control:
2. scalability

Intra-node communication can grow at O(n?)
Adds overhead to already congested network

Low responsiveness for highly dynamic workload

10

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

ASCAR: Automatic Storage Contention Alleviation and Reduction

Client-side rule-based I/O rate control

1. no need for central scheduling or coordination, nimble and highly
responsive

2. no need to change server software or hardware

3. no scale-up bottleneck

Use machine learning and heuristics for rule generation

and optimization
no prior knowledge of the system or workload is required

ascar
Core 11

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Components of the ASCAR prototype

ﬁﬁg;M:rRule Workload
& Character Iu
& Rule Set Client node
| Database
Rule = . ‘
Generator & I Application
Optimizer Workload ‘ i
(SHARP) Classifier - File system client
4+ : T rules
Workload character markers i

Legends:
() Traffic rules
[l ASCAR traffic controller Storage servers

12

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Components of the ASCAR prototype

ﬁﬁg;M:rRule Workload
& Character Iu
& Rule Set Client node
| Database
Rule = . ‘
Generator & I Application
Optimizer Workload ‘ i
(SHARP) Classifier - File system client
4+ : T rules
Workload character markers i

Legends:
() Traffic rules
[l ASCAR traffic controller Storage servers

13

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Components of the ASCAR prototype

ﬁiﬁ;ﬁl;Rule Workload
& Character Iu
& Rule Set Client node
: Database
Rule = . ‘
Generator & I Application
Optimizer Workload ‘ i
(SHARP) Ol | File system client
T : T rules
Workload character markers i

Legends:
() Traffic rules
[l ASCAR traffic controller Storage servers

14

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Generating rules for a certain workload

Measure
workload
performance

Deploy the Tweak the
new rules rules

ascar.
- 15

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Rule-based Contention Control

Rules tell the controller how to react to congestions
tweak the congestion window according to request processing latency

Each client tracks three congestion state statistics
(ack_ewma, send_ewma, pt_ratio)

Each rule maps a congestion state to an action
(Congestion State (CS) statistics) — <action>

An action describes how to change the I/O queue depth and rate
limit:<m, b, T>

new_depth=m x old_depth + b

T iIs the rate limit

asCar..
GsSrc 16

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

What does a rule set look like?

ack PTratto m b v Times Avg.ack Avg.PT

ewma ewma ratio

[41,48) [2.4,4.5) 1 -1.7 33 3011 45 3.2

[48, co0) [0, 4.5) 1 0.9 40 7426 60 2.6
Simplified:

showing only ack_ewma (without send_ewma)
showing only the two most triggered rules

17

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

What does a rule set look like?

15,2

0,41001,0,41104,0,237,-1,-176,32840,717,33501,34012,179
0,41001,0,41104,237,445,-1,-176,32840,1197,35489,35772,315
0,41001,41104,48551,0,237,-1,-176,32840,181,39637,42759,180
0,41001,41104,48551,237,445,-1,-176,32840,324,39616,42875,327
41001,48427,0,41104,0,237,-1,-176,32840,107,42038,40307,188
41001,48427,0,41104,237,445,-1,-176,32840,231,42093,40112,308
41001,48427,41104,48551,0,237,-1,-176,32840,1515,44599,44955,173
41001,48427,41104,48551,237,445,-1,-176,32840,3011,44864,44967,318
0,48427,0,48551,445,2147483647,-1,-58,33980,1903,40353,40714,730
0,48427,48551,2147483647,0,445,-1,-58,33980,697,46398,50612,266
0,48427,48551,2147483647,445,2147483647,-1,-58,33980,221,45984,52309,703
48427,2147483647,0,48551,0,445,-1,-58,33980,581,49626,47402,281
48427,2147483647,0,48551,445,2147483647,-1,-58,33980,143,49957,47146,774
48427,2147483647,48551,2147483647,0,445,-1,90,40396,7426,60457,60714,256
48427,2147483647,48551,2147483647,445,2147483647,-1,-58,33980,2226,60599,61187,737

18

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Begin with one rule: the wholestate spate riaps to

one action
> A
<
p=
I_I
Z
O .
'© Action
! <m, b, T>
o
ascars 00 >
CSre , ack_ewma INT MAX 19

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Try different values of <m, b, T> with the workload

< A

<

=

|

<=

Try the Cartesian product of:

,% {m+0.01,m=0.02,m=z=0.04,..}

LI X

a {b £0.01,b+0.02,b+0.04,..}

X
{tx1, T2, 14 ..}

ascar. 00 .
— : ack_ewma INT_MAX 20

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Find the rule that yields highest performance

> A

<

p=

|

=

O .

'© Action

o <0.9,1,121>

o
ascars 00 >
CsSre ' ack_ewma INT MAX 2]

values

asCar.

pt_raio

>

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Split the state space at the most'Bsetrvedrstate

INT_MAX

Action
<091, 121>

Action
<091, 121>

Action
<09,1,121>

Action
<09,1,121>

0,0

ack ewma

>
INT_MAX 22

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Run the workload, find out the“rtiles that Was
triggered most often

> A
<
>
|
£
Action Action
<09, 1, 121> <091, 121>
fe used 32k times used 0.3k times
Q)
I
ey
Action Action
<091, 121> <091, 121>
used 2k times used 120 times
ascar. 00 >
CsSre ' ack_ewma INT MAX 23

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Improve the most used rules By -SWwegitig-ati*possible
values of <m, b, T>

> N
<
=
' Try the Cartesian product of:
< [{m <001, m+002mz+0.04,..)}
X Action
Ib+0.01,b+0.02b+0.04..} <091, 121>
9 y
o (T+1,T+2,T1+4,..}
o
Action Action
<091, 121> <09, 1,121>
ascar. 0.0 >
CsSre ' ack_ewma INT MAX 24

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Find the action that works best

> A
<
>
|
—
Action Action
- <1.1, 1.5, 80> <091, 121>
©
I
ey
Action Action
<091, 121> <091, 121>
ascar. 00 >
Gsrc ' ack_ewma INT_MAX 25

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Split the most used rule’s statespace at thethost

observed state values

S A
<
> .
— Action Action
- <1.1, 1.5, 80> <1.1, 1.5, 80>
Action
. , <091, 121>
.% Action Action
= <1.1, 1.5, 80> <1.1, 1.5, 80>
ey
Action Action
<091, 121> <091, 121>
ASCAr. 0.0 >
P T , ack_ewma INT MAX <26

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Run workload, find the most usEd Tute; aritiitnprove
It

S A
<
> .
— Action Action
- <1.1, 1.5, 80> <1.1, 1.5, 80>
Action
_ . <0.5, -1, 30>
.% Action Action
= <1.1, 1.5, 80> <1.1, 1.5, 80>
oy
Action Action
<091, 121> <091, 121>
ASCAr. 0.0 >
P T , ack ewma INT MAX 27

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

After find the best action, split the most used rule

S A

<

> . .

— Action Action Action Action

Z | <1.1,1580> | <1.1,1580> | “% ™" | .05 -1 30>

.% Action Action Action Action

S| <1.1,1580> | <1.1,1580> | 30" | <0.5,-1, 30>

O

Action Action
<091, 121> <091, 121>

ascar. 00 >
- : ack_ewma INT_MAX 28

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

After find the best action, split the most used rule

S A

<

> . .

— Action Action Action Action

Z | <1.1,1580> | <1.1,1580> | “% ™" | .05 -1 30>

.% Action Action Action Action

:I <1.1,1.5, 80> <1.1, 1.5, 80> <%g'>'1' <0.5, -1, 30>

O

Action Action
<091, 121> <091, 121>

ascar. 00 >
- : ack_ewma INT_MAX 29

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Repeat this process

> A

<

= . .

— Action Action Action Action

Z | <11,1580> | <1.1,1580> | %" | <05 -1 30>

Action Action

O Action <1%)>1 <1.1,1.5,80> 1 Action Action

S| <1115,80> R | S| <0.5,-1, 30>

O é0’>' "1 <1.1,1.5,80>

Action Action
<091, 121> <091, 121>

ascar 0.0 >
€Sre ' ack_ewma INT_MAX 30

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Prototype and Evaluation

An ASCAR prototype for Lustre

Patched Lustre client to add congestion control
no change to server or other parts

Hardware: 5 servers, 5 clients

ntel Xeon CPU E3-1230V2 @ 3.30GHz, 16 GB RAM,

ntel 330 SSD for the OS,
dedicated 7200 RPM HGST Travelstar Z7K500 hard drive for Lustre,

Gigabit Ethernet

asCar..
GsSrc 31

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

ASCAR is good at increasing tHrEUgHGUt Stk

decreasing speed variance

80

N o) ~J
- - -

Throughput (MB/s)
I
-

Client Nodes Throughput

5

10 15 20

25

Throughput (MB/s)
N
S

Client Nodes Throughput

0 5 10 15 20 25

Time (second)

32

Speed variance change

Workload Throughput Improvément

nli@ascar.io> http://ascar.io

30.00%
20.00% 4 BTIOB4)—
< BTIO (C4)
10.00% 4> Random write
0.00% e D\andcm W . : : : . .
0.0P% . 5.00% .00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%
-10.00% T35 Seq. read
@TP only
Seq. write
20.00% | Sed.wr HTP and Var
-30.00%
-40.00%
«» Random read
oo B BTIO (B4)
. Random write . BTIO (CA4)
-60.00%

Throughput improvement

2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

33

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Changes to Lustre

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Deploying traffic rules to the kerriat ard read ng back
statistics

Through procfs: /proc/fs/lustre/osc/*/qos_rules
We also need to read how many times each rule is triggered
Patched lustre/obdclass/lprocfs_status.c to support loading

rule files larger than 4 KB
using LIBCFS_ALLOC_ATOMIC() instead of __get_free_page()

Added two fields to /proc/fs/lustre/osc/*/import for real time
read/write throughput of osc

36

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Calculating congestion statistics

Updated every time a reply is received
Using a modified equation for calculating ewma because no float
support

At the beginning of brw_interpret()
We don’t know about the overhead yet.

Process time of each RPC request

We changedthe protocol and embedded sent_time in each outgoing
request and use that to calculate the process time. (Alternative ways?)

asCar .
P 37

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Created by Yan Li <yanli@ascar.io> http://ascar.io

Controlling I/0 queue depth

a Car.io

Changing max_rpcs_in_flight
Also patched in brw_interpret()

Frequency is limited
We used twice per second in all our experiments

What about overhead?

Is there a better alternative?

38

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Changes to the protocol

Embed the sent_time in outgoing RPC packets
ptirpc/pack_generic.c: replaced o_padding_{4,5}

No need to change the server
The server just sends back the sent_time

s there a better alternative way?

asCar .
A 39

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Rate limiting

Imposing a minimum gap between RPCs
By introducing delays in osc_build_rpc()

Using udelay(), usleep_range(), and msleep() according to sleep
duration

s it better to do this in osc_check_rpcs() instead of just
sleeping?

40

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Created by Yan Li <yanli@ascar.io> http://ascar.io

Size of the patch

File LOC Changes

include/ascar.h 179 Traffic controller

osc/osc_request.c 169 Traffic controller

osc/gos_rules.c 116 Traffic rule set
- :

gen_candidate_ 06 mplementation o
rules.py GenerateCandidateRulesets()
split rule.p 145 Implementation of SplitRule()

ascar—-tests/ 396 Test cases

dir

asCar..

‘C“{“rs

41

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Project Status

Paper and source code of our prototype are published
nttp://ascar.lo,
nttps.//github.com/mlogic/ascar-lustre-2.4-client

Prototype done on Lustre 2.4. Porting to 2.8.

We will start to work with the community to push our
patch upstream

42

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Future Work and
Research Questions

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Collaboration

Evaluation on a larger scale

Are there features or work-in-progress that can
collaborate with ASCAR?

Are there hints from OST we can use?

44

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Online rule optimization

Current ASCAR prototype requires a lengthy offline
learning process

Online tweaking of rules using random-restart hill
climbing

Also need to evaluate the ASCAR algorithm on other
workloads: database, web services

45

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

What is the best way to dump details of each op of
the past 2 minutes to user space?

Requirement: start time, end time, file handle (or name),
op type, offset, length, OST ID

46

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

How to monitor the change of workload?

Op type: read/write/metadata

Ratios between ops (read to write, read/write to
metadata, etc.)

For each type of op, we measure the following features:
1. average size of sequential ops

2. average positional gap between seq. ops

3. average temporal gap between seq. ops

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

S a m p ‘ e : Created by Yan Li <yanli@ascar.io> http://ascar.io
Different 60% read + 40% write workloads

Read Write

Read to write: 60/40
Avg. size of sequential read: 60 MB
Avg. size of sequential write: 40 MB

Read to write: 60/40
Avg. size of sequential read: 15 MB
Avg. size of sequential write: 13 MB

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Acknowledgments

This research was supported in part by the National Science Foundation under
awards l[IP-1266400, CCF-1219163, CNS- 1018928, the Department of Energy
under award DE-FC02- T0ER26017/DESC0005417, Symantec Graduate
Fellowship, and industrial members of the Center for Research in Storage
Systems. We would like to thank the sponsors of the Storage Systems Research
Center (SSRQ), including Avago Technologies, Center for Information Technology
Research in the Interest of Society (CITRIS of UC Santa Cruz), Department of
Energy/Office of Science, EMC, Hewlett Packard Laboratories, Intel Corporation,
National Science Foundation, NetApp, Sandisk, Seagate Technology, Symantec,
and Toshiba for their generous support.

ASCAR project: http://ascar.io

Contact:
Yan Li <yanli@cs.ucsc.edu>

49

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Backup

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.

Created by Yan Li <yanli@ascar.io> http:/

Request
p + 200

/
S

O
A /5% seq
be very ditferent from another
Request | Request | Request | Request | Request | Request
P p+100 | p+101 | p+120 | p+ 121 | p+ 122
Random requests
Request | Request | Request | Request | Request @ Request
P p+1 p+2 p+3 p+4 p + 100

Request
p + 200

Jential + 25% random workload can

Request
p + 201

Request
p+ 357

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

And there are many different
60% read + 40% write workloads out there

asCar..

e

Copyright (c) 2013, 2014, 2015, 2016 University of California, Santa Cruz, CA, USA.
Created by Yan Li <yanli@ascar.io> http://ascar.io

Sample Congestion State Statistics

Client status

+— Ack EWMA
=+ Congestion window
= = Bandwidth
e—e PT Ratio
— 7T
W

Y]
v

. 0 10 20 30 40 50
a Car o Time (second)
G&src >

