
Lustre Enhancements – Technical White Paper

Implement hash tables to scale export lookups

06/12/08 Sun Microsystems Inc. Page 1 of 5 



Author Date Description of 
Document Change

Client 
Approval By

Client 
Approval Date

green May 07, 2008 Create the document

Nirant May 09, 2008 Review and updates

green June 05, 2008 More implementation 
details

06/12/08 Sun Microsystems Inc. Page 2 of 5 



Problem Statement

When multiple clients connect to a service, the resulting exports are linked into several 
lists.  Lookup traversal of such linked lists (for purposes of finding the exports on 
subsequent reconnects, disconnects and admin-induced evictions) consumes a lot of 
cpu time, especially when many clients are connected. Similar problem exists for 
connection lookups.

Approach

Based on the above analysis,  the exports lookup by UUID or NID needed a more 
scalable implementation. A decision was made to create a generic hash table 
implementation and use that implementation for export and connection lookup 
purposes.

Hash table is a method of finding data where every element stored in the table gets a 
“key”, which is  calculated based on element properties. One big linked list is then split 
into a configurable amount of smaller lists, one list per every key possible. Each new 
element is now being inserted into a  much smaller list now, and for lookups given the 
search criteria, a key is calculated and much smaller list needs to be iterated to find the 
matching elements. This results in vastly improved lookup speeds.

Figure 1: Hash table

06/12/08 Sun Microsystems Inc. Page 3 of 5 

1 2 3 4



Above figure demonstrates hash table concept. When a search is done for a specific 
element, we only search a list in a specific bucket, corresponding to a key calculated 
from element properties. The search time could be reduced by a factor of number of 
buckets in a hash table, subject to good hash functions (key calculation) with low 
amount of collisions for the chosen data.

      Actual Implementation
Implementation of hash tables now lives in obdclass/class_hash.c, and actual 
definitions of structures and export methods live in include/class_hash.h.
Actual hashtable is defined by lustre_class_hash_body structure, that has these 
members:
● hashname – name of the hashtable
● lchb_hash_max_size – number of hash buckets in the table
● lchb_hash_operations – list of operations with hashtable and objects there
● lchb_lock – lock to protect access to the table

Every bucket just contains linked list of objects and lock to protect list manipulations.
List of operations on hastables and objects:
● lustre_hashfn – calculates hash value for a given object
● lustre_hash_key_compare – compares if provided key with key of provided 

object
● lustre_hash_object_refcount_get – obtains one reference count on an object
● lustre_hash_object_refcount_put – releases one reference count on an object

Operations hash table users can perform on the table:
● lustre_hash_init – create and initialize new hashtable
● lustre_hash_additem_unique – add an item with unique key into table (or refuse 

to add, if item with such a key already exists in the table)
● lustre_hash_findadd_unique – add an item with unique key or return existing 

item in the table with same key, if already present there.
● lustre_hash_additem – adds an item into the table
● lustre_hash_delitem_by_key – deletes one item with matching key from the table
● lustre_hash_delitem – deletes item from the table.
● lustre_hash_bucket_iterate – iterates through all objects in a bucket matching 

provided key, calling provided callback
● lustre_hash_iterate_all – iterates through all objects in the table, calling provided 

callback.

06/12/08 Sun Microsystems Inc. Page 4 of 5 



● lustre_hash_get_object_by_key – returns a pointer to referenced object from a 
table, matched by key.

Actual hash used for uuid, nid and connection hashes is djb2 hash algorithm, that is 
believed to be pretty good  for these kinds of values. Actual hash-buckets used for 
these hashes is 128.

Test cases and Results

A test was performed by Cray to start up a large scale job (19180 client nodes.)
Before the hash table patch, such a job made every OST CPU-bound taking over 180 
seconds to just connect to all the nodes. After the patch was applied, connection times 
dropped significantly to around 2 seconds. 

Before Patch After Patch

180s 2s

Table 1: Before and after Results

Conclusions & Future work
UUID Hash code implementation is functional and is included in all Lustre releases, as 
it provides significant performance benefits when running jobs at large scale. Since the 
time of inclusion of this code, other parts of Lustre have started to use it as well,  such 
as the Quota code.

06/12/08 Sun Microsystems Inc. Page 5 of 5 


	Problem Statement
	Approach
	Test cases and Results
	Conclusions & Future work

