
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Submission of the Native Client

It’s really happening, April 2025

James Simmons

Storage Systems Engineer

Oak Ridge National Laboratory



2

Progress over the years

• Decade long project

− Was once in staging tree

⚫ Removed 5 years ago

⚫ Very bad fit

• Much larger community support

− Amazon, Aeon, ORNL, SuSE, HPE

• Work done for two trees

− git clone git://git.whamcloud.com/fs/lustre-release.git

− git clone git://git.github.com/jasimmons1973/linux.git

• Meet with Linux file system maintainers week of March 24



3

How healthy is the native Linux client

• Mostly works out of the box

• Lagging behind supporting newer kernels

• Lagging behind OpenSFS tree

• No proc, all sysfs and debugfs

− debugfs is root only and cloud environments disable it

• Missing GSS code. Working on restoring

• FID magic path (.lustre/fid/X) is broken

− LU-17625, LU-11501, LU-8585

• Possible interval tree issues

− LU-16917



4

OpenSFS tree nearly represents the final state

• IPv6 support is largely done

• libcfs is only debugging. Move into LNet soon

• Special hash table are almost gone on the client

• Proc is nearly gone. Especially on the client side

• Working on dropping RHEL7 handling

• Need better fscrypt support

− Impacts kernel version support of Native client

• Removal of write handler

• Implement flio support



5

Game plan for upstreaming

• Lustre 2.17 will be Lustre 3.0 !!!!

• Rework OpenSFS tree to mirror Linux kernel tree

• Compact module for older kernel support.

− Separate from libcfs

• Reduce module count

• Separate mount targets. mount -t lustre_tgt.

• Allow building Lustre against Linus tree snapshots

• Sync native kernel client with OpenSFS tree

• Change in development process

• Eventually splitting of the tree into two work spaces



6

Purposed development process

• Differences for creating patches

− Break patches up more (kernel, utility code, tests)

− Don’t ignore checkpatch style warnings. Mostly ‘*/’ on its own line

⚫ Lustre is stricter about column count

− Stop using __u32 for kernel only code

− Please use sphinix docs style for new kernel code

• Handle patch flow with gerrit and fsdevel / lustre-devel mailing list

• Auto push of gerrit patches to fsdevel / Lustre-devel

⚫ Limit which patches to send. Don’t send patches for server or utility / test code. Avoid non 
code change rebase / retest sending as well.

⚫ Can be done before merging upstream after OpenSFS tree reorg

• Once client is upstream we collect patches from fsdevel to gerrit

⚫ Can test against native client tree on github before merger



7

Testing and gate keeping policy

• What is the final place for our git tree?

• Will our gatekeeper be the final say?

• Strick patch landing

− Patch can not land directly to outside git tree that merge with Linus

− Must always test each patch no matter how simple

⚫ Maloo can fail due to unrelated issues. Perhaps after first failure 
only send after Maloo pass all test to not flood mailing list.

⚫ Maloo must pass before reviews are considered by gatekeeper

− Must have two or more positive reviews to consider for landing

− Only select people can land patch to final place.



8

Special thanks

⚫ Native client support is a true community effort

⚫ Neil Brown (SuSE)

⚫ Arshad Hussain (Aeon computing)

⚫ Shaun Tancheff (HPE)

⚫ Timothy Day (Amazon)

⚫ Whamcloud team



9

Conclusion

⚫ Least amounts of slides for this project to date

⚫ Heavy development activity today 

⚫ Closest to completion we ever been. Hitting mile stones

⚫ In discussions with Linux file system maintainers



10

Acknowledgments

This work was performed under the auspices of the U.S. DOE by 

Oak Ridge Leadership Computing Facility at ORNL under 

contract DE-AC05-00OR22725.


	Slide 1: Submission of the Native Client
	Slide 2: Progress over the years
	Slide 3: How healthy is the native Linux client
	Slide 4: OpenSFS tree nearly represents the final state
	Slide 5: Game plan for upstreaming
	Slide 6: Purposed development process
	Slide 7: Testing and gate keeping policy
	Slide 8: Special thanks
	Slide 9: Conclusion
	Slide 10: Acknowledgments

