
1

2008-04-16
 WangDi

Lustre & Application I/O

1

2

Agenda
• Scientific Application IO
• LUSTRE IO Tuning
• LUSTRE ADIO driver

3

Scientific Application IO
• HPC Software Stack

 Figure1. HPC application software stack

HPC Application
 HDF5 or NetCDF

 MPI IO
ROMIO ADIO driver

POSIX
LUSTRE

HPC application will
call MPI IO or POSIX
directly

LCE work

4

Scientific Application IO
• Different IO

> Required IO
– Reading input data and Writing final results.

> Checkpoint IO
– Checkpoint IO is the data a program writes periodically in case

of hardware and software failure, and the application can
restart from the checkpoint.

5

Scientific Application IO
• IO pattern

> Scientific applications usually manage multidimensional
arrays, which are stored as one-dimensional arrays of
bytes. Therefore, two array elements that are logically
contiguous might not be stored in adjacent memory or
file location.

> Contiguous IO
– Each client only accesses continuous part of the array.

> Discontinuous IO
– Each client accesses discontinuous part of the array.

6

Scientific Application IO
• Implement IO by scientific IO LIB (NetCDF, HDF5)

> The IO lib manages multiple metadata and data in the
same file by creating different data_sets and accessing
the data_set by name.

> The IO library usually has different I/O layers MPI IO or
posix IO.

> Some IO libraries support parallel IO eg. pNetCDF,
HDF5.

• Most of the metadata operations of Scientific applications
are open/create.

7

Lustre IO Tuning
• General Tuning
• Different IO behaviour
• HDF5 specification
• Examples for IO tuning

8

General IO Tuning
• General Tuning

> Lustre distribute data by stripe size and stripe count.

> System could achieve best IO performance
– Balanced OST load.
– Efficient RPC between clients and servers.

OST3OST1

1

OST2

2
4

File data

Object
3

5 6

client1 client2 client3

1M

9

General Tuning
> Balanced OST load

– Depend on the stripe size and stripe count.
– A bad example

– C1 write (0, 3M), C2 write (3M, 6M), C3 write (6M, 9M). IO size is 1M.
– If we choose stripe_size 1M, stripe_count 3

 C1 C2 C3

OST1 OST2 OST3
0
3
6

1
4
7

2
5
8

1. C1(0,1M) C2(3M,4M) C3(6M, 7M), all IO requests goes to OST1.

2. C1(0,1M) C2(3M,4M) C3(6M, 7M), all IO requests goes to OST2.

3. C1(0,1M) C2(3M,4M) C3(6M, 7M), all IO requests goes to OST3.

10

General Tuning
> Efficient RPC

– Saturate Network and disk IO.
– Currently, the RPC size is equal to IO size in the data servers (OST).

Networks achieve very good throughput at much smaller packet sizes than
disk system. So RPC size is largely depends on how much I/O size the disk
system requires to get best performance. Current max RPC size is 1M.

– Lustre client(CNL) could aggregate data itself and send efficient
RPC(1M) to server, but which is affect by many factors, eg, amount
dirty cache, lock and grant. So RPC may not efficient sometimes.

– If the Application could provide 1M size data to lustre, which will help
lustre client send efficient RPC.

– Less RPC (stripe size aligned IO)
– To make client access less OST in each I/O, and then improve the

whole system parallelism.
– More OST means more RPC, also more disk I/O.

11

General Tuning
• Different IO size comparison

IOR performance(MiB/sec) with different IO size 256 clients

0

1000

2000

3000

32 64 128 256 300 512 700 1M

IO size K

pe
rf

or
m

an
ce

– Right stripe_size and stripe_count

– Large write (1M)

– Aligned write

– Optimal number of writers

12

Different IO Behavior
• Different IO behaviour

> POSIX
– Call POSIX system call directly, no optimization.

> Independent
– Optimize the data pattern locally by data_sieving and stripe_size aligned.
– But sometimes improper using of data_sieving(read-modify-write) cause

unnecessary overhead. Data_sieving also includes flock in the process,
which is expensive sometimes.

> Collective
– Optimize the data over multi-clients. Change interleave ,discontinuous and

uneven IO load over multi clients into continuous and even IO load.
– But there are also overheads for reorganizing the data over the clients.

– Send/receive data over different node.

13

Different IO Behavior
• Comparison

> Overhead
– POSIX: no overhead.
– Independent: read-modify-write and flock.

– read-modify-write and flock are expensive in Lustre.
– Improper read-modify-write in MPI IO.

– Collective: communication
> IO pattern for different IO behavior

– If each client write big(>=1M) and contiguous data, use posix IO.
– If each client write discontinous data but non-interleave between the clients,

use independent IO.
– Disable read-modify-write and increase IO size by hints.

– If each client write interleave data, use collective IO.
– But It always worth to try different IO way, if you met performance problems.

14

HDF5
• HDF5 IO Library

> HDF5 supports two complementary data models, a
dataset and a group. The group is a collection of
datasets, which can also contain other groups in a
hierarchical structure. A HDF5 file can also contain
attributes, containing a text name and a small collection
of data. HDF5 also support different IO layers (POSIX,
Independent, and collective).

> Overhead
– Writing Extra metadata block for each HDF5 file.

15

HDF5 Specification

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

coll Ind posix

open
write
close
other

• HDF5 supports different low-level IO.
> Flash IO performance

– Each client write about 320K continuous data.

2.135.8511.7Time(seconds)
PosixIndcolldriver

Different layer performance with flash IO (256nodes)

16

HDF5 Specification
> Open

– Open costs abnormal high time in Flash IO sometimes
– 30%-40%time (1.3 seconds ---- 3.2 seconds)
– Reason: In HDF5, when open existing file with (TRUNC flags), all the

clients will call MPI_SET_File_size to truncate the file to zero, which
occupies about 95% open time.

If (mpi_rank == 0) {
#ifdef H5_HAVE_MPI_GET_SIZE
 if (MPI_SUCCESS !=(mpi_code=MPI_File_get_size(fh, &size)))
 HMPI_GOTO_ERROR(NULL, “MPI_File_get_size failed”, mpi_code)
#else
 if ((mpi_code=HDstat(name, &stat_buf))<0)
 HMPI_GOTO_ERROR(NULL, “stat failed”, mpi_code)
 size = (MPI_Offset)(stat_buf.st_size);
 #endif
}
………….
if (size && (flags & H5F_ACC_TRUNC)) {
 if (MPI_SUCCESS != (mpi_code=MPI_File_set_size(fh, (MPI_Offset)0)))
 HMPI_GOTO_ERROR(NULL, “MPI_File_set_size failed”, mpi_code)
……….
}
/* MPI_File_set_size costs a lot time about 90% time of open */

17

> Open
– Fixes

– Flash IO, unlink the file, then open/create the file, then open time
decrease from 3seconds to less than 0.1second. So Open truncate
existing file should be avoided.

> Write
– Improper read-modify-write

– When choosing collective IO in HDF5, which will set discontinuous
file view, and it triggers read-modify-write forcely, no matter whether
the writing buffer is continuous or discontinuous, which impacts the
writing performance a lot.

HDF5 Sepcification

18

> Close
– HDF5 close include flush(HDF5_mpio_flush).

– Which will cost about 40%-50% time.

herr_t
H5F_try_close(H5F_t *f)
{
 …………
 /*Flush at this point since the file will be closed */
 /* (Only try to flush the file if it was opened with write access) */
 if (f->intent & H5F_ACC_RDWR) {
 /*Flush and destroy all caches */
 if (H5F_flush(f, H5AC_dxpl_id, H5F_SCOPE_LOCAL, H5F_FLUSH_INVALIDATE |
H5F_FLUSH_CLOSING) < 0)
 HGOTO_ERROR(H5E_CACHE, H5E_CANTFLUSH, FAIL, “unable to flush cache”)
 }
}

HDF5 Specification

19

Examples for IO Tuning
• Several Examples

> POP
– 42 I/O clients, each I/O client aggregate data from other computation

clients. I/O size is about 60M.
– Support Fortran binary IO (parallel), and NetCDF (non-parallel)

– Optimization
– Implement HDF5 parallel IO
– Stripe_size for 60M IO

– 60M IO size will hold too much client lock cache of multi-
server on client, which will impact other clients access
those server. So choose stripe_size to make each client
access servers in parallel.

20

Examples for IO Tuning
• WRF mode

> Produce a HDF5 file (about 8M)
– Each client writes several K bytes(small I/O size) to the shared

data_set.
> Each client writes small and contiguous data segment

– Lustre does not like this I/O pattern.
– It is even worse for more clients.

> Optimization
– Optimize the WRF mode by the new Lustre ADIO driver.
– Aggregate the data from multi-clients and write big I/O size.

21

Examples for IO Tuning
• Programming examples

> Fortran examples
 if (dst_dist%proc(n) == my_task)

 ! Each block is a 4*4 real array return by get_block

 msg_buffer = get_block(n, n)

 write(id, rec=start_record+n) msg_buffer

 endif

Bad examples: Each process only write 4*4*8 = 128 bytes.

if (dst_dist%(proc(n) == my_task)

 msg_buffer = get_block(n,n)

 if (dst_dist%proc(n) < io_tasks) ! It is io_process

 p_max = get_up(n)

 p_min = get_down(n)

 allocate(BIFFER(p_max- p_min, 4, 4))

 do p= p_min, p_max

 MPI_IRECEIVE(BUFFER(p-p_min, 4, 4), 4*4, mpi_real, n,

 p, MPI_COMM_ALL, rcv_requests(p), ierr)

 end do

 else ! Non io_process

 p_io = get_io_process(n)

 MPI_ISEND(msg_buffer, 4*4, mpi_real, p_io, n,

 MPI_COMM_ALL, snd_request, ierr);

 endif

MPI_WAIT(………….)

Gather data then writing with optimal IO process

22

Examples for IO Tuning
• HDF5 examples

if(FieldType .eq. WRF_LOGICAL) then
allocate(BUFFER(di,x1:x2,y1:y2,z1:z2), STAT=stat)
! Loop to fill the buffer………

 call HDF5IOWRITE(DataHandle,Comm,DateStr,Length, DomainStart, DomainEnd ,PatchStart,PatchEnd,MemoryOrder
,FieldType,XType,groupID,TimeIndex,DimRank,Var,BUFFER,Status)

! Inside call HDF5IOWRITE

 HDF5IOWRITE(….)

 CALL h5pset_dxpl_mpio_f(xfer_list, H5FD_MPIO_COLLECTIVE_F& ,hdf5err)

 CALL h5dwrite_f(dset_id,FieldType,XField,dimsfi,hdf5err, mem_space_id =dspace_id,file_space_id =fspace_id,
 xfer_prp = xfer_list)

23

Examples for IO Tuning
• Tow problems in this process

> Each client write small amount of data.

– Gather data in WRF-mode
> Choose collective write for contiguous data will impose

improper read-modify-write.
– Choose Independent or POSIX write driver here.

9.376.722.69Time consumed
80016003200Bytes from each client
1684clients

24

Lustre ADIO Driver
• Collective Write

> Reorganize the data between the clients according to striping
information.
– Reorganize the data according to real data location on OST.
– Choose IO clients to avoid unnecessary communication

between clients.
– Do stripe_size I/O

> I/O patterns benefits from this driver.
– Big size IO will be split to stripe_size IO.
– For small size IO, the data will be aggregated and do big size

IO.

25

Lustre ADIO Driver

File domain 0 File domain 1

Stripe Size

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n
+10

File domain 0’ File domain 1’

OST0 OST2OST1

File domain 2

File domain 2’

n

end_offset0

end_offset1start_offset1

start_offset2

P2

P0

P1

ALIGNMENT

Client3
Client2 Client5Client0

Client1 Client4

DATA

REDISTRIBUTIO
N

n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n
+10n

File domain 0’ File domain 1’ File domain 2’

Offset line

26

LUSTRE ADIO Driver
• Comparison

0.003 sec0.003 sec0.003 sec0.002 secNew adio driver
0.015 sec0.026 sec0.059 sec0.074 secOld adio driver
2048 bytes1024 bytes512 bytes256 bytesIO size

IOR performance comparison (48 clients)

27

LUSTRE ADIO Driver
• Overhead

– In the new ADIO driver, the time costs on communication (send/receive data
between real IO clients and other clients) increases a lot when IO size increases,
which is unexpected.

28

LUSTRE ADIO Driver
• The overhead occupies almost 80% for some IO

nodes.
> Communication between these nodes are also

unbalanced.
• The reason is being investigating

> Inefficient send/receive algorithm?
> The bottleneck of JanguarCNL environment?
> Open MPI ?

29

Thanks & Questions

