
National Aeronautics and Space Administration

www.nasa.gov

Optimizing Lustre Performance
Using Stripe-Aware Tools

Paul Kolano
NASA Advanced Supercomputing Division

paul.kolano@nasa.gov

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Introduction

• Lustre has great performance...
- ...If you know how to use it

• Standard system tools employed by users to
manipulate files do not know how to use it
- Do not take striping into consideration

• Files end up on too few or too many stripes
- Not enough parallelism to keep Lustre busy

• File operations achieve fraction of available I/O bandwidth
• Subject of this talk
-Modify standard tools to more appropriately support Lustre

• Stripe-aware system tools
• High performance system tools

2

National Aeronautics and Space Administration

www.nasa.gov

Stripe-Aware System Tools

Part 1/2

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Lustre Stripe Counts

• Stripe count determines how many OSTs a file will
be divided across

• Stripe count can significantly impact I/O performance
- Good: more OSTs = more available bandwidth
- Bad: more OSTs = more overhead

• Striping is set when file created and cannot be
modified without copying data
- Need to specify stripe count carefully or may be sorry later!

4

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Specifying Lustre Stripe Counts

• Option 1: Default striping policy
- Stripe count of newly created files will default to configured

value when not explicitly set
• Problem 1: Different file sizes behave better with

different stripe counts
- High default value

• Small files waste space on OSTs
• Small files generate more OST traffic than desirable for

things like stat operations
- Low default value

• Large files achieve significantly reduced performance
• Large files result in imbalanced OST utilization

5

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Specifying Lustre Stripe Counts (cont.)

• Option 2: Manual striping by user
- Prestripe files and/or directories with "lfs setstripe -c"

• Problem 2: What's a stripe?
- Users may not know what a stripe is
- Users may not remember to set striping
- Users may not know what the appropriate value should be

for their files/directories
- User directories typically contain mixture of small/large files

• Same dilemma as default case

6

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Specifying Lustre Stripe Counts (cont.)

• Option 3: Stripe-aware system tools
- Stripe files dynamically based on size as users perform

normal system activities
- Default can be kept low for more common small files

• Problem 3: Few (if any) system tools know about
Lustre striping

7

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Specifying Lustre Stripe Counts (cont.)

• Option 3: Stripe-aware system tools
- Stripe files dynamically based on size as users perform

normal system activities
- Default can be kept low for more common small files

• Problem 3: Few (if any) system tools know about
Lustre striping

• Solution: Enhance commonly used system tools with
this knowledge!

8

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Tools Used In Typical HPC Workflow

• User remotely transfers data to file system
- scp, sftp, rsync, bbftp, gridftp

• User prepares data for processing
- tar -x, gunzip, bunzip2, unzip

• User processes data on compute resources
- Unknown

• Input: will already be striped appropriately (hopefully!)
• Output: still based on default/user-specified striping

• User prepares results for remote transfer
- tar -c, gzip, bzip2, zip

• User remotely retrieves results from file system
- Not our problem!

9

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Tools Used In Other Common Activities

• Admin copies data between file systems to balance
utilization
- cp, rsync

• User copies data between file systems (e.g.
home/backup directory to scratch space)
- cp, rsync

• User retrieves data from archive systems
- scp, sftp, rsync, bbftp, gridftp

10

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Adding Stripe-Awareness
(Simple!)

• Find instances of open() using O_CREAT flag
- Striping needs to be specified at file creation

• Determine if target file is on Lustre
- statfs() f_type == LL_SUPER_MAGIC

• Determine projected size of target file
- Complexity may be higher in some applications

• e.g. Must sum over individual file sizes during tar creation
• Compute desired stripe count based on size
- Can preserve source striping with llapi_file_get_stripe()

• Switch open() to llapi_file_open() with stripe count

11

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

4 Host Parallel dd Write Time
(Different Offsets of Same File with Direct I/O)

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB
8GB
4GB
2GB
1GB

12

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

4 Host Parallel dd Read Time
(Different Offsets of Same File with Direct I/O)

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB
8GB
4GB
2GB
1GB

13

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Retools: Restriping Tools for Lustre

• These particular results seem to indicate 1 stripe per 2-4 GBs
may be best
- Probably needs further analysis

• Implemented set of stripe-aware tools
- Tools start with "m" for historical (and possibly future) purposes
- Basic activities covered

• Archival/Extraction: mtar
• Compression/Decompression: mbzip2/mbunzip2, mgzip/mgunzip
• Local transfer: mcp, mrsync
• Remote transfer: mrsync

- Striping policy
• Originally set at 1 stripe per GB (graphs schmaphs!)
• Before any analysis based on "gut feeling" of staff members

14

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Bzip2/Bunzip2 Execution Times
(1 Source File with 1 Stripe)

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32

Ti
m

e
(s

)

Size (GB)

bzip2
mbzip2
bunzip2
mbunzip2

15

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Gzip/Gunzip Execution Times
(1 Source File with 1 Stripe)

16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

gzip
mgzip
gunzip
mgunzip

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Rsync Execution Times
(1 Source File with 1 Stripe)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

rsync
mrsync

17

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Tar Create/Extract Execution Times
(1 Source File with 1 Stripe)

18

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

tar-c
mtar-c
tar-x
mtar-x

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Stripe-Awareness: A Good First Step

• Can keep default stripe count low for more common
small files
- Reduced OST contention and wasted space

• Large files will automatically use more stripes as they
are manipulated by standard system tools
- User computations will transparently achieve higher

performance
- OST utilization will be kept in better balance

• Modest performance gains for tools themselves
• But...
- Standard system tool performance still nowhere near raw

Lustre I/O rates
19

National Aeronautics and Space Administration

www.nasa.gov

High Performance System Tools

Part 2/2

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

High Performance Tools

• Problem: Standard system tools don't know how to
take advantage of Lustre's high bandwidth
- Use single thread of execution, which cannot keep single

system I/O bandwidth fully utilized
- Rely on operating system buffer cache, which becomes

bottleneck
- Forego parallelism in favor of simplicity by using sequential

reads and writes
- Operate on one host, where single system bottlenecks limit

max performance

21

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

High Performance Tools

• Problem: Standard system tools don't know how to
take advantage of Lustre's high bandwidth
- Use single thread of execution, which cannot keep single

system I/O bandwidth fully utilized
- Rely on operating system buffer cache, which becomes

bottleneck
- Forego parallelism in favor of simplicity by using sequential

reads and writes
- Operate on one host, where single system bottlenecks limit

max performance
• Solution: Enhance commonly used system tools with

this knowledge!

22

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Increasing Tool Performance Beyond Striping
(Complex!)

• Use multiple threads to keep single host busy
• Use direct I/O to bypass buffer cache
• Use asynchronous I/O to overlap reads/writes
• Use multiple hosts for aggregate bandwidth
• Large files reduce effectiveness of parallelism
- Split processing of files into parallelizable chunks

23

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Example: High Performance Cp
(The rest are left as exercises for the reader!)

• Mcp: the original (and still the best!) "m" util
-Multi-threaded
-Multi-node

• Original single-threaded cp behavior
- Depth-first search
- Directories are created with write/search permissions before

contents copied
- Directory permissions restored after subtree copied

24

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Multi-Threaded Parallelization of Cp
(via OpenMP)

• Traversal thread
- Original cp behavior except when regular file encountered

• Create copy task and push onto semaphore-protected task queue
• Pop open queue indicating file has been opened
• Set permissions and ACLs

• Worker threads
- Pop task from task queue
- Open file and push notification onto open queue

• Directory permissions and ACLs are irrelevant once file is opened
- Perform copy

• Multi-node capability
- Manager node and worker nodes with TCP or MPI threads handling

distribution of tasks between traversal thread and worker threads

25

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Adding Multi-Threading/Buffer Management
(64x1GB)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads

direct I/O
posix_fadvise()
none
cp

26

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Adding Double Buffering via Asynchronous I/O
(64x1GB)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads

direct I/O (double buffered)
direct I/O (single buffered)
posix_fadvise() (double buffered)
posix_fadvise() (single buffered)
cp

27

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Adding Multi-Node Support via TCP/MPI
(64x1GB)

28

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
cp

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Adding Split-File Support
(1x128GB)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

C
op

y
Pe

rfo
rm

an
ce

 (M
B/

s)

Threads Per Node

theoretical peak
16 nodes
8 nodes
4 nodes
2 nodes
1 nodes
cp

29

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Mcp Results

• Cp performance now more in line with that of Lustre
- 10x/27x of original cp on 1/16 nodes
- 72% of peak based on (old) 6.6 GB/s max read/write

• Side benefit: fast restriping
- Only way to restripe files is to copy
-Mcp does fast copies and is stripe-aware!

30

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Conclusion

• Modified standard system tools commonly found in
user workflows to better support Lustre
- Stripe-aware tools
- High performance tools

• Based on original source code
- 100% compatible drop-in replacement for standard tools

• e.g. install as "tar", not "mtar"
• Better for users
- Transparently achieve higher performance by simply using

the tools they already use
• Better for file systems
- Reduce contention, wasted space, and imbalances on

OSTs 31

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Future Work

• Make other tools in standard workflow stripe-aware
- Archive/compression: zip
- Transfer: scp, sftp, bbftp, gridftp

• Make other tools high performance
- Tar a good candidate since it is widely used and very slow

• Better analysis of optimal stripe count formula

32

N A S A H i g h E n d
C o m p u t i n g
C a p a b i l i t y

Finally...

• Retools: mbzip2, mgzip, mrsync, and mtar
- In process of being open sourced (takes a few months)

• U.S. Govt.: can get right now through inter-agency release
-Will live at http://retools.sourceforge.net when released

• Mutil: mcp and msum (high performance md5sum)
- Already open sourced and available
- http://mutil.sourceforge.net

• Email:
- paul.kolano@nasa.gov

• Questions?
33

