
Lustre iRODS Connector

Open Source Data Management
for a Parallel File System

Lustre iRODS Connector

Open Source Data Management
for a Parallel File System

Justin James
Applications Engineer, iRODS Consortium

April 26, 2018
Lustre User Group 2018

Argonne National Laboratory
1

Quick iRODS Overview

iRODS is

Open source
Distributed
Metadata Driven
Data Centric

A flexible framework for the abstraction of infrastructure

2

iRODS as the Integration Layer

3

iRODS Overview - Data Virtualization

Combine various distributed storage
technologies into a Unified Namespace

Existing file systems (Lustre, etc.)
Cloud storage
On premises object storage
Archival storage systems

iRODS provides a logical view into the complex physical
representation of your data, distributed geographically,
and at scale.

4

iRODS Overview - Data Virtualization

Logical Path

Physical Paths(s)

5

iRODS Overview - Data Discovery

Attach metadata to any first class entity
within the iRODS Zone

Data Objects
Collections
Users
Storage Resources
The Namespace

iRODS provides automated and user-provided
metadata which makes your data and infrastructure
more discoverable, operational and valuable.

6

Metadata Everywhere

7

iRODS Overview - Workflow Automation

Integrated scripting language which is
triggered by any operation within the
framework

Authentication
Storage Access
Database Interaction
Network Activity
Extensible RPC API

The iRODS rule engine provides the ability to capture
real world policy as computer actionable rules which
may allow, deny, or add context to operations within
the system.

8

Dynamic Policy Enforcement

restrict access
log for audit and reporting
provide additional context
send a notification

The iRODS rule may:

9

Dynamic Policy Enforcement

A single API call expands to
many plugin operations all
of which may invoke policy
enforcement

Authentication
Database
Storage
Network
Rule Engine
Microservice
RPC API

Plugin Interfaces:

10

Secure Collaboration

iRODS allows for collaboration across
administrative boundaries after
deployment

No need for common infrastructure
No need for shared funding
Affords temporary collaborations

iRODS provides the ability to federate
namespaces across organizations without
pre-coordinated funding or effort.

11

iRODS Service Interface

12

iRODS Overview - Federation - Shared Data and Services

13

Institutional repositories

As data matures and reaches a broader community,
data management policy must also evolve to meet
these additional requirements.

14

Motivation - Capturing the Products

Focus on the bottom right hand side of the image

15

iRODS Lustre Framework

16

iRODS Lustre Framework - Rationale

Users want iRODS features (user metadata, policies, etc.) while
maintaining native Lustre filesystem access for users.

iRODS already supports POSIX filesystems

An iRODS vault can be located within a Lustre mount point

However, this approach has some drawbacks:

All modifications must go through the iRODS API
Changes made directly to the filesystem will not be detected by iRODS
leading to drift between the filesystem and the iRODS catalog
Existing tools must be rewritten to accommodate the iRODS API
Does not take advantage of the highly efficient and distributed nature
of Lustre

17

iRODS Lustre Framework - Design

Add iRODS features on top of the Lustre filesystem

Users may continue to directly access filesystem.

Use the Lustre changelog to keep iRODS data objects and
collections in sync with the Lustre filesystem.

All catalog updates are in-place registrations only. No data
copies are required.

Keep iRODS out of the critical data path. Performance of
the Lustre cluster is not impacted.

18

iRODS Lustre Framework - Efficiency Considerations

Accumulate and aggregate updates

Lustre Connector uses multiple threads to send
batched updates to iRODS in parallel

 A plugin that resides within iRODS receives and
processes the bulk updates

Support scaling with multiple iRODS endpoints
and a distributed database

19

iRODS Lustre Framework - Overview

 iRODS Lustre Connector

 iRODS API Plugin

20

iRODS Lustre Framework - iRODS API Plugin

A dedicated iRODS API plugin within iRODS accepts and
processes bulk updates from the iRODS Lustre Connector.

There are two modes for the iRODS API plugin:

Direct - Plugin performs direct database updates. This
plugin bypasses the iRODS API architecture. Prioritizes
efficiency over policy.

Policy - Plugin performs updates via iRODS API. This
executes all policy enforcement points (PEPs) within
iRODS. Prioritizes policy over speed.

21

iRODS Lustre Framework - Example
[root@zfs1 ~]# mount -t lustre 192.168.56.31@tcp1:/lustre01 /lustre01

[root@zfs1 bld]# echo 'this is a test' > /lustre01/testfile.txt && ils
/tempZone/lustre:
 C- /tempZone/lustre/dir1

[root@zfs1 bld]# ils
/tempZone/lustre:
 testfile.txt
 C- /tempZone/lustre/dir1

[root@zfs1 bld]# iget testfile.txt -
this is a test

[root@zfs1 bld]# imeta add -d testfile.txt description 'just a test file'

[root@zfs1 bld]# imeta ls -d testfile.txt
AVUs defined for dataObj testfile.txt:
attribute: description
value: just a test file
units:

attribute: lustre_identifier
value: 0x20000cf21:0x3:0x0
units:

[root@zfs1 bld]# imv testfile.txt dir1

[root@zfs1 bld]# ils dir1
/tempZone/lustre/dir1:
 test4.txt
 testfile.txt

22

iRODS Lustre Framework - Configuration
{
 "mdtname": "lustre01-MDT0000",
 "lustre_root_path": "/lustre01",
 "irods_register_path": "/tempZone/lustre",
 "irods_resource_name": "demoResc",
 "irods_api_update_type", "policy",
 "log_level": "LOG_INFO",
 "changelog_poll_interval_seconds": 1,
 "irods_client_connect_failure_retry_seconds": 30,
 "irods_client_broadcast_address": "ipc:///irods_client_broadcast_events",
 "changelog_reader_broadcast_address": "ipc:///changelog_reader_broadcast_events",
 "changelog_reader_push_work_address": "ipc:///changelog_reader_push_work_events",
 "result_accumulator_push_address": "ipc:///result_accumulator_push_address",
 "irods_updater_thread_count": 5,
 "maximum_records_per_update_to_irods": 200,
 "maximum_records_to_receive_from_lustre_changelog": 500,
 "message_receive_timeout_msec": 2000,
 "thread_1_connection_parameters": {
 "irods_host": "localhost",
 "irods_port": "1247"
 },
 "thread_2_connection_parameters": {
 "irods_host": "localhost",
 "irods_port": "1247"
 }
}

Notable Configuration Entries

MDT Name
Mount Point Available to iRODS
Registration Point in iRODS
Multiple iRODS Endpoints - If not defined, use iRODS environment

23

iRODS Automated Ingest Capability

Based on Redis for distributed job scheduling

Designed to solve two particular use cases:

Onboarding of existing body of data

discovery and registration of files into iRODS catalog

on-the-fly metadata extraction

does not rely on the Lustre changelog

Disaster recovery

can be run periodically to sync iRODS catalog with Lustre MDS

does not rely on the Lustre changelog

24

Goal: iRODS - Parallel and Distributed, Front-to-Back

Parallel Filesystem

Automated Ingest Capability

iRODS

with multipart, soon

with distributed database plugin

Auditing Framework

Indexing Framework

25

iRODS CockroachDB Database Plugin

CockroachDB is a distributed database which
supports an SQL query interface.

With CockroachDB, iRODS may have multiple
catalog (database) providers within an iRODS grid.

The iRODS Lustre connector allows you to assign
different endpoints to different threads.

When used with CockroachDB, this allows
horizontal scaling of processing Lustre updates
without encountering a bottleneck at the database.

26

iRODS Lustre Framework - Demonstration

27

