(intel)" Look Inside:

|[dea of Metadata Writeback Cache for Lustre

Oleg Drokin
Apr 23,2018

_adl |
* Some names and brands may be claimed as the property of others. m
T |

Current Lustre caching

« Data:
« Fully cached on reads and writes in face of no contention
 Really fast as the result (grant is another consideration)

« Metadata:
* Only reads are cached
 All modifications are sluggish as the result
« Even non modifications like opens are also sluggish

« As the result - multiple proposals for extra caching were made
« Amongst them subtree locks

« PCCis another project aiming at this problem from another angle
 Fujitsu had a similar one in the past

ﬂ

50 how hard metadata caching could really be

| set out to find limits of easy with a prototype

 |f we create a dir, we know 100% all the names inside
« Just get the exclusive lock and nobody else would interfere
 We could accumulate normal names
 Serve readdir out of dcache
» Even store file data totally in pagecache without talking to mds
« Ramfs of sorts

« QOverall the idea sounds pretty simple, right?

ﬂ

Implementation notes

Mkdir is a reint create RPC, no locks.

Server actually has reint create handler, but it's not used
« And sending a create intent results in LBUG
« Making client to send mkdir as intent create is pretty easy

« Making server return EXclusive lock if the create succeeded is easy
as well.

« Flag such directories on the client as “fully locally owned”

Magic begins

» For "fully locally owned" directories we can override everything
« Alllookups are either in local cache or are safely negative

« All creates go straight to dcache and stay there

« C(lient side FID allocation allows for consistent FIDs even if we
want to flush to server later

 All unlinks just remove dcache entries

« Same dir or subdir renames are dcache-only ops
 Hardlinks in this subtree is really easy too
 Stat just reads data from inode

 Attaching file data to locally owned files is pretty easy.

ﬂ

But what I the lock Is cancelled

 [terate over the directory entries in the cache
« For every entry do intent-create RPC with “I got the parent lock”

« We get EX lock back, for subdirs that means the subtree is
preserved

 For files that means we get to keep our file data safely until we
establish layout and grab proper data locks

« Other entries don't care
 Hardlink is @ major complication since we cannot do create

* Once all entries are done with - drop the lock and the directory is
magically visible to all clients.

 This is a real easy conversion path back to shared access unlike
other approaches.

ﬂ

EXclusive metadata lock - like a data lock

Allows the client to operate on locked directories without
deadlocks

* A hard requirement for the whole scheme

 Just like with data locks - we can send/execute metadata ops
under metadata EX locks

Every RPC that furnishes “parent EX lock” prolongs the lock so it
does not time out prematurely

Data writeback handling

« e already have the data in the pagecache, but CLIO knows
nothing about it.

« To assimilate data first we need the layout and data locks.

* WWe must enqueue the locks while still holding the exclusive layout
lock so nothing can peek in the file

« \ery similar to HSM restore

Once we got the locks - simply add CLIO data structures to existing
pages (convenient cl_page_find()-> cl_io_commit_async())

« \WWould be better to be able to just do cl_Ipage_alloc

« Thanks to Jinshan for guidance

Once file reverts to normal Lustre file, with regular writeback

H

1he result

* As expected, uncontended operations just fly at unbelievable
speeds

« 10x-20x improvement in createmany performance on local VMs
* FPP mdtest with 16 clients - ~6M/sec cumulative ops
« Unpacking linux kernel tarball - 10 seconds (vs 210s)

 Actual workloads improve too

 Building Lustre in VM - 25%+ improvement on idle servers
« QOverloaded servers are not affecting WBC operations

 Building rhel7.4 kernel on real HW 4.5m (vs

« Would really shine in interactive kind of workloads with congested
Servers

ﬂ

Limitations - "‘benchmark cache mode”

o (reat "benchmark” workload handler
« C(reate X files, stat, remove -> 0 RPCs need to be sent
* No accounting (changelog)

« Bursty flushes on lock cancels instead of smoothed trickling out

« Operating on preexisting directories is complicated.

Another mode - write behind cache

« Every operation creates suitable RPC that is sent asynchronously

Userspace gets control right away so they are not impacted

Smoothes server load - useful for real workloads

« Untar archive and it starts to trickle out right away
» We know that data we write WILL be used by other nodes

No ‘cancelling of operations’, but changelogs become possible

Easier to work with preexisting directories
« Read in the data into cache and get an EX lock, done.
« Readdir/readdir+ alike combining would help

» Decided by the server

ﬂ

Other possible improvement ways

« Compounding multiple operations into a single network RPC
* Now that we actually have string of operations cached
* DoM can get create+data sort of RPCs for small file writes

« Hooks for more permanent storage of cached data on clients

» Log-based fs of some sort? Just cachefs?

Prototype limitations

 No hardlinks

* Root only file ownership on flush

* No error handling

« DNE status unknown

« Basedon 2.11 release for rhel7.4 only
* No xattrs/posix ACLs

* No grants/limits/accounting

« Sync is noop

* No memory use limits

* Only “benchmark mode” implemented

M

Conclusion

« Many aspects are not as hard as they seemed at first

« Some parts are useful on their own
« Even limited implementations would have successful niches

* You can see my prototype patches linked from LU-10938

Questions?

Questions?

