
Interoperable Client RecoveryAmit Sharma28-12-20071 IntroductionThis document outlines the detailed design for the Interoperable client recoverwork which was explained in the HLD (interop-client-recovery.lyx)2 Functional Speci�cation2.1 Working in interoperability mode
• At the time of connection with the server the client would use the OBD_CONNECT_FID�ag to �nd if the server is a 1.8 server. If the server is a 1.8 server, theclient can use this information for all deciding if somethings are to be donedi�erently.
• (req->rq_export->exp_connect_�ags& OBD_CONNECT_FID) and (exp->exp_connect_�ags & OBD_CONNECT_FID), can be used to �nd ifthe client is connected to a 1.8 server.2.2 Two cases of recovery
• When the server has to be upgraded, it would be brought down and thenbrought up after the upgrade. So, the client when connecting to theupgraded server will see this as a case of recovery and has to handle it.
• The other case of recovery is the normal case, when either the client orthe server or the network goes down and then comes up again.2.3 Algorithm Change
• As discussed in the HLD there has been a slight change in the recoveryalgorithm from the point of view of the client. This change has to be takencare of in the target_handle_connect() on the client side.
• Just to get an idea of the algorithm change and for the sake of reference,below is the section from HLD which discusses about it.1

2.4 The other di�erences between 1.6 and 1.82 FUNCTIONAL SPECIFICATION1. In 1.8 server the recovery task is handled by the recovery thread tar-get_recovery_thread, which is started o� by target_recovery_init().This is di�erent from 1.6 in which the recovery process is started aspart of the target_handle_connect.2. At the server end when the recovery process starts, a recovery_timeris started and the �rst transno to be replayed is found. And therecovery_timer is stopped after the time out period. If some clientfails to connect within this time, it is evicted.3. In the next stage, the clients replay their requests. If some client failsto replay its requests in the time out period it is evicted.4. The next stage is for the clients to replay their locks. But if any clientis unable to replay the locks in the time out period, the recovery isaborted and all clients are evicted. And the recovery process has tostart again.5. After this the server drops the recovering �ag, and starts forwardingall the requests from now on to the regular mds_handle().6. Then in the �nal stage, the server sends out �nal reply.
• Most of the above is similar to 1.6, except that there are just two stagesin 1.6 Replay and Final Reply. This will have some minor a�ect in therecovery process for the client in 1.6.x. And has to be taken care of byenabling the 1.6.x client to communicate with the 1.8 server in a way thatthe 1.8 client would behave in a similar situation.
• We discuss below for how we propose to deal with the above di�erence in1.6 and 1.8 client.2.4 The other di�erences between 1.6 and 1.8Apart from the above, there were a few more di�erences between 1.6 and 1.8that were mentioned as part of the HLD which might come into play. But mostof them are being taken care of as part of other tasks and very little if any workrelated to those di�erences would come in the purview of this task. For thesake of reference we mention those di�erences here again and also for the sakeof need in case some corner cases which are recovery speci�c arise out of thosedi�erences which might have to be handled as part of this task.
• Use of FIDs - Handled as part of interop_client_�d
• Request �ag and connection �ag changes - Handled as part of client_interop_reqsand mixed_layout_reqs
• SOM related changes - Handled as part of som-recovery

2

3 USE CASES3 Use Cases3.1 Server upgrade/downgrade
• The server upgrade/downgrade will be treated as a case of recovery fromthe point of view of the client. While upgrading the server to 1.8, it will befailed and for the clients it will be a normal recovery procedure. Just thatin this case, they would be talking to a server of higher or lower version(depending on upgrade/downgrade) after the recovery.
• To handle this scenario, a �ag would be needed which would tell us whatthe previous version of the server was. So, after every recovery a compar-ison to this �ag would tell us if there has been a upgrade/downgrade atthe server.
• In case there has been a upgrade/downgrade at the server, the client wouldneed to take care of converting the import data that it has to the new servertype. But this would depend on the way the task client_interop_�d andclient_interop_reqs implement some of the data structures which storemost of the connection and server information.3.2 Server crashes/reboots
• This case will be handled almost in the same way as it is done now. Justsome small changes will have to be made to accommodate for the changein the algorithm that 1.8 uses (See section 2.3).3.3 Client crashes/reboots
• Similar to the above case, this will also be handled in more or less thesame way as it is done now. With small changes to adapt to the newrecovery algorithm.3.4 Network failure
• This case also remains mostly the same. The HLD has a good explanationof all the possible scenario that can come up in the case of a Network failureand what would be the action taken. Just for the sake of reference it ispasted below again.Network failure has to be handled in a similar way as the case when clientcrash/reboots. When the client requests time out, the recovery procedurewill be kicked o� and then the process follows as per the recovery algorithmWe can take a look at how a �open-write-close� scenario would work incase there is a network failure.The network failure can happen at the following stages:3

4 LOGIC SPECIFICATION
• Before the client does a �open�: There could be two cases in open. One isthe case of a pure open, and the other is the case of open/creat.� In case of pure open, the task is simple as a new transaction is notcreated in this case, and the trans no is just bumped up. In case offailure such a transaction can be taken care of at the server end bya simple replay of the open operation.� In the open/create case there will be a transaction and so it willhave to be handled. In the transaction stop callback the transactionnumber, request id, last operation result and intent disposition isstored in the last_rcvd record. At the time of replay this record willcome in handy and since the �le had already been created, it wouldjust be opened as part of the recovery.
• After the �open� but before �write�: There could again be two cases here,one is the simple case where in the clients request for open has beenexecuted by the server so after the reconnect nothing needs to be done atthe server end. The other case would be when the server did not receivethe open request from the client. So, based on the status of the requeston the client, it would start to replay requests, the server would comparethe requests and see if that request has been executed at the server. Anddecide on whether to replay the transaction or not.
• Network failure after the �write� but before �close� and failure after �close�: The �le open request (along with the �d for the newly created �le) willbe kept in the client replay list until the �le is closed. There is an open �lehandle (struct mdt_�le_data *mfd) on MDS for every open �le, linkedtogether into this client's export. When client crash/reboot/reconnect toMDS, all open handle will be destroyed. When server crash/reboot/recover,client will replay its open request, and continue on the write operation.4 Logic Speci�cation4.1 Working in interoperability mode
• At the time of connection with the server the client would use the OBD_CONNECT_FID�ag to �nd if the server supports �ds, if the server does support �ds thenit has to be a 1.8 server. If the server is a 1.8 server, the client can usethis information for all deciding if somethings are to be done di�erently.
• For di�erent places in the code where it may be needed to �nd what modethe client is running in (normal mode or interoperability mode). Theexp_connect_�ags and OBD_CONNECT_FID can be used as followsto �nd the mode, depending on the context of the call.(req->rq_export->exp_connect_flags & OBD_CONNECT_FID)4

4.2 Two cases of recovery 4 LOGIC SPECIFICATIONor(exp->exp_connect_flags & OBD_CONNECT_FID)
• And at other places in the code, couple of �ags de�ned later in this docu-ment (server_version = PRE_FID and POST_FID) can also be used todetermine which logic to implement.if (server_version == PRE_FID) {...... //set of things to be done}orif (server_version == POST_FID) {...... //another set of things to be done}4.2 Two cases of recovery1. When the server has to be upgraded/downgraded, it would be broughtdown and then brought up after the upgrade/downgrade. So, the clientwhen connecting to the upgraded/downgraded server will see this as a caseof recovery and has to handle it.(a) For this to be implemented, the proposal is to have a store the in-formation of the previous server connection. So, after every recoverythe new server information (version number?) can be compared tothe old information to see if the server has been upgraded. As of nowwe dont save the old server version number information. It can besaved without much trouble and used as below.In ptlrpc_connect_interpret(), the previous connect �ag can becompared to the current connect �ag be made to come to a conclusionif the server has been upgraded.ptlrpc_connect_interpret(){......if (!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) {current_server_version = PRE_FID; // could be other name, this is} else { // just for understanding.current_server_version = POST_FID;if (prev_server_version < current_server_version) {server_upgrade = true; // will be used later} elseif (prev_server_version > current_server_version) {server_downgrade = true;} 5

4.3 Algorithm change 4 LOGIC SPECIFICATIONprev_server_version = current_server_version;// store the current version as the// old version for future checks....}(a) If there has been an upgrade at the server, depending on the imple-mentation the import information might need updation to match thenew server version and be compatible. That will have to be takencare at this stage. This is a case which is not very clear as of nowand will depend on if the import information will change in the inter-operability mode and so not much details are presented. There maybe no need to do handle this situation in case there are no changesmade to the import information.if (server_upgrade) {// do a set of things to ensure that the old imports/data// are compatible with the new upgraded server;// this will depend on the implementation of how the// import/data is stored differently from the 1.6 in the// interoperability mode, hence the details are missing.} elseif (server_downgrade) {// do a set of things to ensure that the old imports/data// are compatible with the down graded server;// this will depend on the implementation of how the// import/data is stored differently from the 1.6 in the// interoperability mode, hence the details are missing.}2. The other case of recovery is the normal case, when either the client orthe server or the network goes down and then comes up again. This willbe handled as a normal case and will follow the usual recovery algorithm,ofcourse following the modi�ed algorithm which 1.8 uses.4.3 Algorithm changeThe change in recovery algorithm will a�ect the three use cases (3.2, 3.3 and3.4) mentioned above. We see some details below as to how the changes canbe handled. Not much work will be needed to handle the algorithm changementioned. A quick comparison of the 1.6 and 1.8 code for the import recoverystate machine (ptlrpc_import_recovery_state_machine()) shows that notmany changes have been made to the client side code. So, for getting the 1.6.x(interoperable client) to talk to the 1.8 server very minor changes are needed.diff 1.6/import.c 1.8/import.c [function = int signal_completed_replay()]896c889,890 6

4.4 The other di�erences between 1.6 and 1.8 4 LOGIC SPECIFICATION< lustre_msg_add_flags(req->rq_reqmsg, MSG_LAST_REPLAY);---> lustre_msg_add_flags(req->rq_reqmsg,> MSG_LOCK_REPLAY_DONE | MSG_REQ_REPLAY_DONE);956c950ORIt can be better understood as below :if (server_version == PRE_FID) {lustre_msg_add_flags(req->rq_reqmsg, MSG_LAST_REPLAY);} elseif (server_version == POST_FID) {lustre_msg_add_flags(req->rq_reqmsg,MSG_LOCK_REPLAY_DONE | MSG_REQ_REPLAY_DONE);}The extra stage that we earlier mentioned is being taken care at the client sidein a single step as seen in the above code di�. So it would be a similar case toemulate the above code for the new client aswell.4.4 The other di�erences between 1.6 and 1.8As previously mentioned most of these are being taken care of by other tasks.But in case they are unable to take care of some corner cases or very specialcases which are very speci�c to recovery we can take up those tasks later.

7

