
LUG 2016

Scaling LDISKFS for the future

Artem Blagodarenko
LUG 2016
Portland, Oregon

LUG 2016

Lustre FS Backend Storages

✓ Created as fast backend
storage

✓ based on ext4 which has
a large community

✓ There are many
successfully deployed
systems based on
LDISKFS

✓ Developed by Sun
Microsystems

✓ Has large scalability
✓ Fully asynchronous

support
✓ Many other features like

COW

ZFS LDISKFS

Lustre uses two file
systems for backend

storage

LUG 2016

LDISKFS Partitions in Production

LDISKFS quickly exceeded the original design!

The maximum
backend

storage size
increases

>16TB
300TB

10TB6TB 8TB
> >As drive

size
increases

LUG 2016

Set New Limit

Test & Verify

Creating Large Partitions

Set option force_
over_xxxtb

YesNo

Production

size <
current

limit

LUG 2016

LDISKFS Max Size Increasing Challenges

Are formatting parameters still actual?

Are Lustre FS structures ready?

Are LDISKFS data structures ready?

Has anyone tried to create such large partitions?

Are Lustre FS Tools ready?

LUG 2016

mkfs_cmd = mke2fs -j -b 4096 -L testfs-OSTffff -J size=400 -I
256 -i 1048576 -q -O
extents,uninit_bg,dir_nlink,huge_file,64bit,flex_bg -G 256
-E lazy_journal_init,lazy_itable_init=0 -F /dev/md1

MKFS Default Parameters

LUG 2016

Inodes Count per Bytes Rate

>10GB >1TB >4TB >16TB

64kB 256kB 512kB 1MB

EXT4 limited with UINT32_MAX (2^32-1=4294967296) inodes by design

Partition Size

Average File Size

Average file size can be set using -i option or default value is used

Set average file
size for large

partition

Use many
OSTs

› 169 TB partition
› -i 1048576
› 177635072 inodes

the smallest value is 43368

4294967296/177635072 = 24 OSTs

LUG 2016

Performance near first and last block of disk

Due to large disk size performance loss at the end of
surface is possible

There are mkfs options that move some metadata to
optimal part of disk (flex_bg and -G)

This options are currently used in our standard
configuration, but numbers should be corrected

This parameter could be adjusted for new size of disk.
Option can be changed after LU-6442

LUG 2016

Scalability issues

› Two level hash tree and leaf block which consist up 300 directory entry
› Total number of directory entry limited by ~20 millions entries
› Hash collisions decrease real directory size
› Solution: increase a hash tree levels, patch e2fsprogs and allow set special

flag to FS (LU-7932)

› Use case: large number of creations + unlinks.
› Hash tree is created, but never reduced
› Large hash range assigned to one dir entry block and none free blocks in

tree to split due long time usage
› Limited with 300 entry per directory if hash from name will bad

LUG 2016

Ext4 uses ext4_fsblk_t type for global block accessing and
ext4_lblk_t for file logical blocks. ldiskfs patches use the same types.

LDISKFS data structures

typedef unsigned long long
ext4_fsblk_t;

/* data type for file logical block number */
typedef __u32 ext4_lblk_t;

/* data type for block offset of block group */
typedef int ext4_grpblk_t;

LUG 2016

ext4_map_inode_page
There is function with parameter “unsigned long *blocks”:

int ext4_map_inode_page(struct inode *inode,
struct page *page,unsigned long *blocks, int create)

But ext4_bmap returns sector_t value.
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
blocks[i] = ext4_bmap(inode->i_mapping, iblock);

That depending on macros can be 32 or 64 bit long

This issue is actual for x86_32
systems only, because unsigned long
is 64bit long on x86_64 systems. Patch landed in

LU-6464!

LUG 2016

Lustre FS structures

Extended attribute (LU-7267,LU-7325)

Quote limits. Sizes and inodes counter

llog. llog id

2

1

3

This parts of
code are verified

LUG 2016

Tools. FSCK

› Bad blocks accessing in wrong way
› Some functions in bitmap layer uses blk_t
› Hurd translators

There are 64 bit for addressing blocks by number.
typedef __u64 __bitwise blk64_t;

There is 32 bit version
typedef __u32 __bitwise blk_t;

LUG 2016

Mount the 128 TB+ device
as ldiskfs to ensure
lustre/kernel supports huge
file systems

Run e2fsprogs utilities to
ensure 128 TB+ support

Setup OST on this device to
ensure Lustre can handle
huge devices and run
Lustre testsuite

Run llverfs and lldevfs to
ensure that the kernel can
perform operations on the
device without any errors

Common Tests for 128 TB+ ldiskfs Partitions

Components To Be Tested

e2fsprogs ldiskfs Lustre

The goals
for testing

LUG 2016

Special test cases

MKFS
lazy init

New file in
group at
the end of
the disk

Test for 64k
subdirectory
limit

Testing inode
allocation

LUG 2016

Results

For Customers

› Fewer OSTs

› Larger OSTs

› Decreased resource

requirements

› Denser storage

For Community

› Code review

› Testing suite

› Patches with fixes

› Move LDISKFS size limit to

256TB (LU-7592)

LUG 2016

Current Work

Current work is focused on extending
the limit above 256TB.

WORK IN
PROGRESS

LUG 2016

Future Work

Extending inodes count over UINT32_MAX

Check large memory blocks allocation

Invent solutions for large directories

LUG 2016

Thanks to

Alexey Lyashkov
Elena Gryaznova

Meghan McClelland

Acknowledgments

LUG 2016

Thank you!

	Scaling LDISKFS for the future
	Lustre FS Backend Storages
	LDISKFS Partitions in Production
	Creating Large Partitions
	LDISKFS Max Size Increasing Challenges
	MKFS Default Parameters
	Inodes Count per Bytes Rate
	Performance near first and last block of disk
	Scalability issues
	LDISKFS data structures
	ext4_map_inode_page
	Lustre FS structures
	Tools. FSCK
	Common Tests for 128 TB+ ldiskfs Partitions
	Special test cases
	Results
	Current Work
	Future Work
	Acknowledgments
	Thank you!

