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What is CADES?
• CADES is the Compute and Data Environment for Science
• An effort at Oak Ridge National Lab to centralize data and compute on various 

platforms
• Currently has three primary center-wide Lustre file systems, one for each 

protection zone (Open Research, Moderate, and HDSI)
• Zones incorporate VM infrastructure, cluster compute, and specialized HPC 

resources
• Specialized HPC includes Cray Urika GX, SGI UV300, and Cray XK7 systems
• Compute cluster consists of 425 Cray CS400 nodes spread among the protection 

zones
• VM Infrastructure consists of a self-service OpenStack environment for research 

and computational resource



Admin Tasks

Manage the node state
• Config files
• Enable/disable services
• Install/uninstall packages
• Maintain consistency
• Aim for “static state”

Manage the file system

• Many of the same tasks as 
managing the nodes

• Runtime administration
• MDT/OST failover
• Disable OST

• One-shot tasks
• Format file system



Why Ansible?

• Configuration management for node images
• In particular, support for chroot environments

• Uses ssh under the hood
• This what a lot of homegrown Lustre scripts do anyway

• Avoid duplication of information
• Why put same Lustre info in Ansible and homegrown scripts?
• Can we make Ansible the definitive source for Luster info?



Ansible for Node Administration



Diskless System Basics
• All Lustre systems in CADES utilize a “diskless” hybrid shared NFSRoot file system
• Allows systems to maintain coherency between all nodes and provide a stateless 

environment for security and stability
• CADES utilizes GeDI (Generic Diskless Installer) for its hybrid environment across all 

compute nodes and Lustre nodes
• Hybrid NFSRoot utilizes a read-only NFS mount for the majority of the file system but 

allows for some writeable areas stored in ramdisks
• Utilize /var, /tmp, and /etc as localized ram disks with /root being a shared writeable NFS 

mount
• GeDI copies files from NFSRoot on boot to create identical systems, and then runs scripts 

to customize specific files



Ansible Diskless Management

• GeDI creates a basic root file system image on the NFS server
• Ansible used to fully customize the image to create easily 

repeatable environments
• Ansible has provisions for native chroot vs other config management 

tools (puppet, chef) which require modules
• Some Ansible modules utilize pseudo-tty functionality of SSH 

and won’t be compatible with chroot
• Ex – service, command



General Design

• Divide roles up by most general to most specific
• Allows for optimal reuse of code
• Example

• Roles for base nfsroot config shared by lustre and compute nodes
• Additional roles to specialize the nfsroot for lustre or compute node

• Roles used on both normal and nfsroot-based servers should 
use methods that work in chroot environment

• Ex - LDAP role copies script to /tmp on node then executes



Playbook Example
• Shortened version of playbook for Lustre installation
- hosts: /images/gedi-hydra-lustre-ansible
remote_user: root
connection: chroot
roles:
- base_auth-ldapx
- base_setup-hosts_file
- storage_lustre-hydra_base_config
- storage_lustre-configure_zfs_repo
- storage_lustre-dkms_installs
- storage_lustre-configure_srp



Ansible for Lustre Administration



Disclaimer 
(a.k.a – I am not an Ansible expert)
• Playbooks, roles, etc. are a work in progress

• Design decisions presented here may not be final
• Some choices might be site-specific
• Missing some edge cases and error checking

• Goal is to generalize this work as much as possible to make it 
usable by others

• Feedback is certainly welcome



Lustre Administration Tasks

• Manage zpools
• Create/destroy
• Import/export
• Status

• Manage Lustre targets (MGT/MDTs/OSTs)
• Format targets
• Start/stop targets
• Handle target failover
• Check target status



General Design

• Use roles to group tasks based on functionality
• zpool stuff in one role, Lustre stuff in another

• Host-specific parameters in /etc/ansible/host_vars/
• Default parameters in /etc/ansible/roles/$ROLE/vars/
• Use tag to select action (and only run when tag is specified)
• Use --limit to restrict actions to specific host(s)

• Use -e to further restrict targets of actions



Managing zpools (Config)

• /etc/ansible/host_vars/or-oss-d1/zpools.yaml

---
zpools:
- name: oss-d1-ost0
device: /dev/mapper/test-ddn-d-l00

- name: oss-d1-ost1
device: /dev/mapper/test-ddn-d-l01

- name: oss-d1-ost2
device: /dev/mapper/test-ddn-d-l02



Managing zpools (Role)

• /etc/ansible/roles/zpool/tasks/main.yaml
---
- set_fact: abort=true

- name: Create a zpool
command: /sbin/zpool create {{ item.create_options | 

default(zpool_create_options) }} {{ item.name }} {{ item.device }}
with_items: "{{zpools}}"
when:
- abort is undefined
- item.name | match(target|default(".*"))

tags: create_zpool



Managing zpools (Playbook)

• Create a very simple playbook for testing

- hosts: zfs-nodes
remote_user: root
roles:
- zpool



Managing zpools (Examples)

• Create all zpools on all hosts
ansible-playbook zpool.yaml --tag create_zpool

• Create all zpools on single host
ansible-playbook zpool.yaml --tag create_zpool --limit or-oss-d1

• Import single zpool on single host
ansible-playbook zpool.yaml --tag import_zpool --limit or-oss-d1 
-e target=oss-d1-ost1



Format Lustre (Config)
• host_vars/$HOST/lustre.yaml
---

osts:

- name: ost0

index: 0

zpool: oss-d1-ost0

- name: ost1

index: 1

zpool: oss-d1-ost1

• roles/lustre/vars/main.yaml
---

lustre:

fsname: ansible

backfstype: zfs

mgsnode: 172.23.85.24@tcp0



Format Lustre (Role)

• /etc/ansible/roles/lustre/tasks/main.yaml
- name: Format MDTs
command: /usr/sbin/mkfs.lustre --mdt --backfstype={{ lustre.backfstype }} 

--fsname={{ lustre.fsname }} --index={{ item.index }} 
--mgsnode={{ lustre.mgsnode }} {{ item.zpool }}/{{ item.name }}

with_items: "{{ mdts }}"
when:
- abort is undefined
- mdts is defined
- item.name | match(target|default(".*"))

tags:
- format_mdts
- format_lustre



Format Lustre (Playbook)

• Test the role using a simple playbook

- hosts: lustre-servers
remote_user: root
roles:
- lustre



Format Lustre (Example)

• Format entire file system
ansible-playbook lustre.yaml --tag format_lustre

• Format all MDTs
ansible-playbook lustre.yaml --tag format_mdts

• Format single OST
ansible-playbook lustre.yaml --tag format_osts –e target=ost0

• Formate all OSTs on a single host
ansible-playbook lustre.yaml --tag format_osts --limit $HOST



Start Lustre (Role)

• /etc/ansible/role/lustre/tasks/main.yaml
- name: Start OSTs
command: mount -t lustre {{ item.zpool }}/{{ item.name }} 

/tmp/lustre/{{ item.name }}
with_items: "{{ osts }}"
when:
- abort is undefined
- osts is defined
- item.name | match(target|default(".*"))

tags:
- start_osts
- start_lustre



Start Lustre (Example)

• Start the entire file system
ansible-playbook lustre.yaml --tag start_lustre

• Start all OSTs on a host
ansible-playbook lustre.yaml --tag start_osts --limit 
or-oss-d2



Future Work

• Additional functionality and generalization
• Add support for ldiskfs
• Support arbitrary layouts for zpools
• Support failover parameters

• Support multiple Lustre file systems
• Investigate the use of custom facts or modules
• Tie into root image management

• Use config variables to generate Lustre files



Conclusion

• Ansible is a good configuration management tool for NFSRoot
images due to its support for chroot

• Although some small concessions must be made
• Ansible is also a promising tool for Lustre administration beyond 

standard configuration management
• Lustre playbooks can help automate many Lustre tasks

• More work still needs to be done to generalize playbooks
• Still some questions on how far this work can go
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Questions?


