
Lustre
Management
with Ansible
Rick	Mohr	(University	of	Tennessee)

Nathan	Grodowitz (Oak	Ridge	National	Lab)

Christopher	Layton	(Oak	Ridge	National	Lab)

What is CADES?
• CADES is the Compute and Data Environment for Science
• An effort at Oak Ridge National Lab to centralize data and compute on various

platforms
• Currently has three primary center-wide Lustre file systems, one for each

protection zone (Open Research, Moderate, and HDSI)
• Zones incorporate VM infrastructure, cluster compute, and specialized HPC

resources
• Specialized HPC includes Cray Urika GX, SGI UV300, and Cray XK7 systems
• Compute cluster consists of 425 Cray CS400 nodes spread among the protection

zones
• VM Infrastructure consists of a self-service OpenStack environment for research

and computational resource

Admin Tasks

Manage the node state
• Config files
• Enable/disable services
• Install/uninstall packages
• Maintain consistency
• Aim for “static state”

Manage the file system

• Many of the same tasks as
managing the nodes

• Runtime administration
• MDT/OST failover
• Disable OST

• One-shot tasks
• Format file system

Why Ansible?

• Configuration management for node images
• In particular, support for chroot environments

• Uses ssh under the hood
• This what a lot of homegrown Lustre scripts do anyway

• Avoid duplication of information
• Why put same Lustre info in Ansible and homegrown scripts?
• Can we make Ansible the definitive source for Luster info?

Ansible for Node Administration

Diskless System Basics
• All Lustre systems in CADES utilize a “diskless” hybrid shared NFSRoot file system
• Allows systems to maintain coherency between all nodes and provide a stateless

environment for security and stability
• CADES utilizes GeDI (Generic Diskless Installer) for its hybrid environment across all

compute nodes and Lustre nodes
• Hybrid NFSRoot utilizes a read-only NFS mount for the majority of the file system but

allows for some writeable areas stored in ramdisks
• Utilize /var, /tmp, and /etc as localized ram disks with /root being a shared writeable NFS

mount
• GeDI copies files from NFSRoot on boot to create identical systems, and then runs scripts

to customize specific files

Ansible Diskless Management

• GeDI creates a basic root file system image on the NFS server
• Ansible used to fully customize the image to create easily

repeatable environments
• Ansible has provisions for native chroot vs other config management

tools (puppet, chef) which require modules
• Some Ansible modules utilize pseudo-tty functionality of SSH

and won’t be compatible with chroot
• Ex – service, command

General Design

• Divide roles up by most general to most specific
• Allows for optimal reuse of code
• Example

• Roles for base nfsroot config shared by lustre and compute nodes
• Additional roles to specialize the nfsroot for lustre or compute node

• Roles used on both normal and nfsroot-based servers should
use methods that work in chroot environment

• Ex - LDAP role copies script to /tmp on node then executes

Playbook Example
• Shortened version of playbook for Lustre installation
- hosts: /images/gedi-hydra-lustre-ansible
remote_user: root
connection: chroot
roles:
- base_auth-ldapx
- base_setup-hosts_file
- storage_lustre-hydra_base_config
- storage_lustre-configure_zfs_repo
- storage_lustre-dkms_installs
- storage_lustre-configure_srp

Ansible for Lustre Administration

Disclaimer
(a.k.a – I am not an Ansible expert)
• Playbooks, roles, etc. are a work in progress

• Design decisions presented here may not be final
• Some choices might be site-specific
• Missing some edge cases and error checking

• Goal is to generalize this work as much as possible to make it
usable by others

• Feedback is certainly welcome

Lustre Administration Tasks

• Manage zpools
• Create/destroy
• Import/export
• Status

• Manage Lustre targets (MGT/MDTs/OSTs)
• Format targets
• Start/stop targets
• Handle target failover
• Check target status

General Design

• Use roles to group tasks based on functionality
• zpool stuff in one role, Lustre stuff in another

• Host-specific parameters in /etc/ansible/host_vars/
• Default parameters in /etc/ansible/roles/$ROLE/vars/
• Use tag to select action (and only run when tag is specified)
• Use --limit to restrict actions to specific host(s)

• Use -e to further restrict targets of actions

Managing zpools (Config)

• /etc/ansible/host_vars/or-oss-d1/zpools.yaml

zpools:
- name: oss-d1-ost0
device: /dev/mapper/test-ddn-d-l00

- name: oss-d1-ost1
device: /dev/mapper/test-ddn-d-l01

- name: oss-d1-ost2
device: /dev/mapper/test-ddn-d-l02

Managing zpools (Role)

• /etc/ansible/roles/zpool/tasks/main.yaml

- set_fact: abort=true

- name: Create a zpool
command: /sbin/zpool create {{ item.create_options |

default(zpool_create_options) }} {{ item.name }} {{ item.device }}
with_items: "{{zpools}}"
when:
- abort is undefined
- item.name | match(target|default(".*"))

tags: create_zpool

Managing zpools (Playbook)

• Create a very simple playbook for testing

- hosts: zfs-nodes
remote_user: root
roles:
- zpool

Managing zpools (Examples)

• Create all zpools on all hosts
ansible-playbook zpool.yaml --tag create_zpool

• Create all zpools on single host
ansible-playbook zpool.yaml --tag create_zpool --limit or-oss-d1

• Import single zpool on single host
ansible-playbook zpool.yaml --tag import_zpool --limit or-oss-d1
-e target=oss-d1-ost1

Format Lustre (Config)
• host_vars/$HOST/lustre.yaml

osts:

- name: ost0

index: 0

zpool: oss-d1-ost0

- name: ost1

index: 1

zpool: oss-d1-ost1

• roles/lustre/vars/main.yaml

lustre:

fsname: ansible

backfstype: zfs

mgsnode: 172.23.85.24@tcp0

Format Lustre (Role)

• /etc/ansible/roles/lustre/tasks/main.yaml
- name: Format MDTs
command: /usr/sbin/mkfs.lustre --mdt --backfstype={{ lustre.backfstype }}

--fsname={{ lustre.fsname }} --index={{ item.index }}
--mgsnode={{ lustre.mgsnode }} {{ item.zpool }}/{{ item.name }}

with_items: "{{ mdts }}"
when:
- abort is undefined
- mdts is defined
- item.name | match(target|default(".*"))

tags:
- format_mdts
- format_lustre

Format Lustre (Playbook)

• Test the role using a simple playbook

- hosts: lustre-servers
remote_user: root
roles:
- lustre

Format Lustre (Example)

• Format entire file system
ansible-playbook lustre.yaml --tag format_lustre

• Format all MDTs
ansible-playbook lustre.yaml --tag format_mdts

• Format single OST
ansible-playbook lustre.yaml --tag format_osts –e target=ost0

• Formate all OSTs on a single host
ansible-playbook lustre.yaml --tag format_osts --limit $HOST

Start Lustre (Role)

• /etc/ansible/role/lustre/tasks/main.yaml
- name: Start OSTs
command: mount -t lustre {{ item.zpool }}/{{ item.name }}

/tmp/lustre/{{ item.name }}
with_items: "{{ osts }}"
when:
- abort is undefined
- osts is defined
- item.name | match(target|default(".*"))

tags:
- start_osts
- start_lustre

Start Lustre (Example)

• Start the entire file system
ansible-playbook lustre.yaml --tag start_lustre

• Start all OSTs on a host
ansible-playbook lustre.yaml --tag start_osts --limit
or-oss-d2

Future Work

• Additional functionality and generalization
• Add support for ldiskfs
• Support arbitrary layouts for zpools
• Support failover parameters

• Support multiple Lustre file systems
• Investigate the use of custom facts or modules
• Tie into root image management

• Use config variables to generate Lustre files

Conclusion

• Ansible is a good configuration management tool for NFSRoot
images due to its support for chroot

• Although some small concessions must be made
• Ansible is also a promising tool for Lustre administration beyond

standard configuration management
• Lustre playbooks can help automate many Lustre tasks

• More work still needs to be done to generalize playbooks
• Still some questions on how far this work can go

Acknowledgments

This research used resources of the Compute and Data
Environment for Science (CADES) at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Questions?

