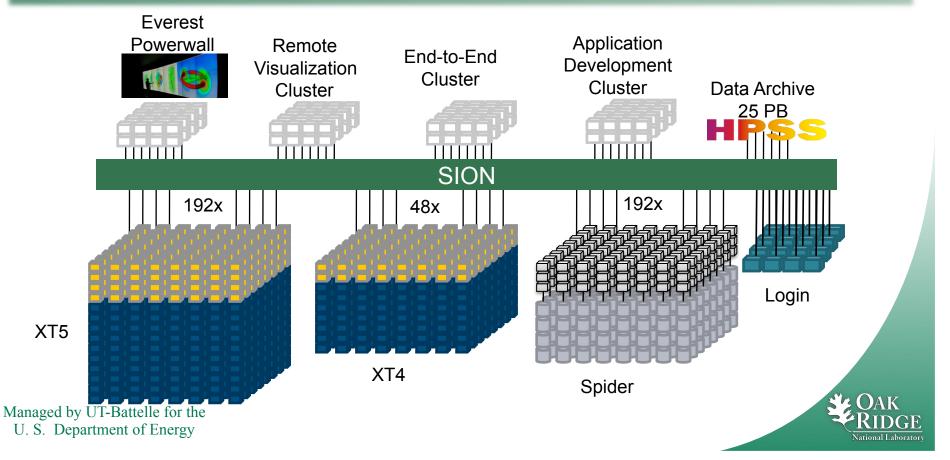
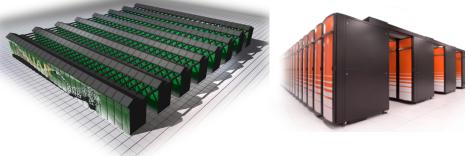

2015 Parallel File System Requirements

Where are we today: Center-wide File System



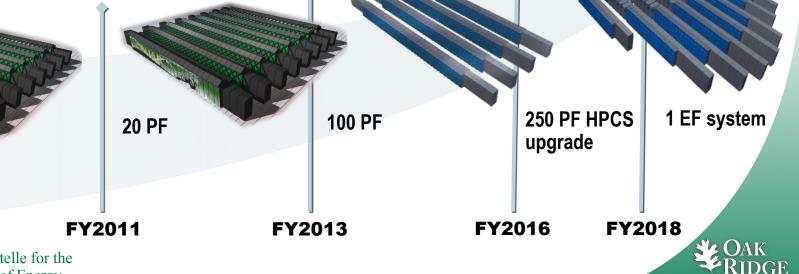
- "Spider" provides a shared, parallel file system for all systems
 - Based on Lustre file system
- Over 10 PB of RAID-6 Capacity
 - 13,440 1 TB SATA Drives
- 192 Storage servers
 - 3 TeraBytes of memory
- Available from all systems via our highperformance scalable I/O network
 - Over 3,000 InfiniBand ports
 - Over 3 miles of cables
 - Scales as storage grows
- Collaborative effort was key to success
 - ORNL, Cray, DDN, SUN (LCE)


Benefits of Spider

- Accessible from all major LCF resources
- Accessible during maintenance windows
- Decouples simulation platform procurement from storage system procurement
 - Allows file system to take an independent trajectory
 - Procurements can be planned to better coincide with vendor roadmaps

Spider Status

- Demonstrated bandwidth of over 200 GB/s on direct attached storage
- Demonstrated stability on a number of LCF systems
 - Jaguar XT5
 - Jaguar XT4
 - Smoky
 - Lens
 - All of the above..
 - Over 26,000 clients mounting the file system and performing I/O
- Early access on Jaguar XT5 and Lens today!
 - General Availability this Summer


LCF Roadmap for delivering an Exascale System for Science in a decade

Mission: Deploy and operate the computational resources needed to tackle global challenges

- Climate change
- Terrestrial sequestration of carbon
- Sustainable nuclear energy
- Bio-fuels and bio-energy
- Clean and efficient combustion
- Nanoscale Materials
- Energy, ecology and security

Vision: Maximize scientific productivity and progress on the largest scale computational problems

- Providing world class computational resources and specialized services for the most computationally intensive problems
- Providing a stable hardware/software path of increasing scale to maximize productive applications development

Managed by UT-Battelle for the U. S. Department of Energy

Jaguar

FY2009

2015 – Leadership Computing

- In 2016 our 100 petaflop platform will be upgraded to 250 petaflops
 - A roadmap based on deliverable technologies
 - Actively working with vendors on these technologies
 - A 154x increase in total flops
 - Unlikely to see a similar increase in total system memory 30x would put as near 10 Petabytes of system memory

2015 – I/O Performance Requirements

- 1 GB/s / TFLOP
 - Checkpoint time assumes 75% of total system memory

	TFLOP	GB/s	Checkpoint (Seconds)
Current System ->	1380	1380	217
2011 System->	20000	20000	70
2013 System ->	100000	100000	30
2016 System ->	250000	250000	24

These bandwidths are not achievable due to budgetary constraints

2015 – I/O Performance Requirements

- I/O performance requirements driven by system memory
 - Checkpoint 75% of system memory in x seconds

Checkpoint time in seconds		1125	720	360	
System Memory (TB)		Bandwid	th (GB/s)		
Current System ->	300	200	313	625	
2011 System->	1400	933	1458	2917	
2013 System ->	3000	2000	3125	6250	
2016 System ->	6000	4000	6250	12500	

Total Capacity

- Ability to store 30 full system (75% of memory) checkpoints
 - 1400 TB system memory -> 31 Petabytes
 - 3000 TB system memory -> 67 Petabytes
 - 6000 TB system memory -> 135 Petabytes
- Capacity requirements are achievable
 - Evolving use-cases may require substantially more capacity
 - Bandwidth requirements may increase capacity dramatically

Functionality

File system name space can span multiple sites

– Implications for file system semantics?

pNFS interoperability - Cray

 makes Lustre site-wide storage accessible from non-Lustre clients

Performance and Capacity

- Storage space
 - 100's of Petabytes of capacity
- I/O Bandwidth
 - 6 12 Terabytes/second
- Number of files
 - ~1 Trillion files
- Metadata operation rates
 - 1,000,000 operations / second
 - Linear scaling of per MDS performance (CMD)
 - CMD required
 - Lightweight large scale query capability LLNL

Performance and Capacity

- Tiered storage support
 - SSDs
 - Enterprise disk
 - Near line disk
 - Tape
- Lighter weight file system interfaces
 - Posix on interactive nodes
 - Lockless semantics on computes
 - APIs suitable for middleware libraries
- Ultra fast write/read for checkpoint/restart CEA
- User tools for performance tuning HPCS

Usability

File system responsiveness

- Interactive users should not be forced to tolerate response times on the order of minutes
- Pathological jobs can substantially degrade interactive performance
 - See NWChem
- QOS may play a role here favoring interactive clients over computes

Manageability

- Millions of objects
 - O(100,000) clients
 - O(100,000) disks
- Transparently add/change infrastructure
 - Hardware, software
 - Version compatibility
 - more thanN-1, N, proxy with protocol conversion? CEA

Tiered storage

- Seamless data migration
- Enforcing purge/replication policies
- Lustre as an HSM?

Manageability

- Accounting
- Policy manager and policy engine
 - Bandwidth percentage (Shares)
 - Quotas
 - Allocate by user, system, project etc.
 - Global mechanism (i.e. integrated with batch system)
- Operational Scalability (scaling not just for benchmarks but operationally with 2015 hardware for data and metadata) – HPCS

Manageability cont.

- Reference design for Lustre storage Cray
 - requirements (ratios, facts/figures) for MDTs,
 OSTs, JDT's (JDT = journal data targets, separate from the OSTs)
 - use of storage tiers (caches, SSDs, SAS, SATA)
- Open Data Management to interface to 3rd party backup, archive, HSM, ILM suppliers - Cray

- I/O performance lagging FLOPs
 - Storage system component growth will outpace component growth in our simulation platforms
 - Components will be continuously failing SUN
- rapid end-to-end failover (ie from client to disk) - beyond end-to-end data integrity, rapid failover is needed to provide a higher reliability solution – Cray

Describing your I/O for high-performance

- Beyond file system "hints" we need a common API to describe I/O operations
- Allows the file system to allocate objects on storage "classes" appropriate for subsequent I/O operations

Rethinking I/O – Don't hide behind a FD

- Parallel file systems can learn from other parallel computing middleware's most notably MPI
 - Our codes describe global and local communication via MPI semantics in order to scale
- Simulations which scale must describe their I/O operations
 - Beyond environment variables, ioctl's and stupid pet tricks (knowing stripe alignment)
- Need a parallel I/O interface that expresses the lower level infrastructure in order to scale to 100,000 clients and achieve reasonable performance
 - This will be FS specific but can be abstracted by middle-ware layers

Meeting in the Middle

- APIs to describe I/O operations
 - Gives the file system the ability to optimize
- Intelligent file systems
 - We can't put all the onus on users and middle ware libraries
 - Ability to adapt based on changing workloads is critical
 - Adaptive routing
 - Adaptive block/object allocation

