Agenda

• Future of Storage – Sun’s vision
• Lustre - vendor neutral architecture roadmap
Sun’s view on storage
introduction
The IT Infrastructure

- Backoffice
- HPC
- Web
Big Changes

- Everything is a cluster
- Open Source everywhere (Computer, Network, Storage)
- Fully virtualized processing, IO, and storage
- Integration, datacenter as a design center

NOW

COMPUTE:
Many cores, many threads, open platforms

COMING

STORAGE OPEN PLATFORMS:
$/performance
$/gigabyte

NETWORKING:
Huge bandwidth
Open platforms
What's Ahead

<table>
<thead>
<tr>
<th>Open Servers</th>
<th>Open Storage</th>
<th>Open Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leveraging innovative product design and packaging</td>
<td>A storage architecture that leverages:</td>
<td>• Unified datacenter network that utilizes common components</td>
</tr>
<tr>
<td>• Common components</td>
<td>• Open software</td>
<td>• Open source software</td>
</tr>
<tr>
<td>• Open source software</td>
<td>• An open architecture</td>
<td>• Seamless integration with existing environments</td>
</tr>
<tr>
<td>• Wide interoperability to deliver breakthrough economics</td>
<td>• Open interoperability to create innovative storage products</td>
<td>• Delivers breakthrough economics</td>
</tr>
<tr>
<td></td>
<td>• Delivers breakthrough economics</td>
<td></td>
</tr>
</tbody>
</table>
ZFS
the central component of Open Storage
What is ZFS?
A new way to manage data

- End-to-End Data Integrity
 With checksumming and copy-on-write transactions

- Easier Administration
 A pooled storage model – no volume manager

- Immense Data Capacity
 The world's first 128-bit file system

- Huge Performance Gains
 Especially architected for speed

End-to-End Data Integrity

Immense Data Capacity

Easier Administration

Huge Performance Gains
Trouble with Existing File Systems?

Good for the time they were designed, but...

- **No Defense Against Silent Data Corruption**
 - Any defect in datapath can corrupt data... undetected

- **Difficult to Administer—Need a Volume Manager**
 - Volumes, labels, partitions, provisioning and lots of limits

- **Older/Slower Data Management Techniques**
 - Fat locks, fixed block size, naive pre-fetch, dirty region logging
Storage software features

Getting out of the controller…

Storage Management
- Redundancy
- Snapshots
- Replication
- Monitoring
- Management
- NAS exports

Solaris + ZFS
- Replace RAID controllers
- Foundation for Lustre / pNFS
 ...

Lustre
- Horizontal Scaling
- HPC
- Web 2.0
ZFS re-usability

- Storage controller – iSCSI or IB volume exports
 > With the enterprise goodies
- Local file system
- NAS server
- Storage layer for clustered storage
 > pNFS, Lustre, others
“I know you're out there.
I can feel you now.
I know that you're afraid... you're afraid of us.
You're afraid of change.
I don't know the future.
I didn't come here to tell you how this is going to end.
I came here to tell you how it's going to begin.”

Lustre introduction
World’s Fastest and Most Scalable Storage

• Lustre is the leading cluster file system
 > 7 of Top 10 HPC systems
 > Half of Top 30 HPC systems

• Demonstrated Scalability and Performance
 > 100 GB/sec I/O
 > 25,000 Clients
 > Many systems with 1000s of nodes
Lustre – scalable file system

• Lustre is a shared file system
 > Software only solution, no hardware ties
 > Developed as company – gvmt lab collaboration
 > Open source, modifiable, many partners
 > Extraordinary network support
 > Smoking performance and scalability
 > POSIX compliance and High Availability

• Lustre is for “extreme storage”
 > Horizontal scaling of IO over all servers
 > parallelizes I/O, block allocation and locking
 > Similar for metadata over MDS servers
 > add capacity by adding servers
 > Example: week1 of LLNL BG/L system: 75M files, 175TB
What kind of deployments?

• Extremely Large Clusters
 > Deployment: extremely high node count, performance
 > Where: government labs, DoD
 > Strengths: modifiability, special networking, scalability

• Medium and Large Clusters
 > Deployment: 32 – low thousands of nodes
 > Where: everywhere
 > Strengths: POSIX features, HA

• Very large scale data centers
 > Deployments: combine many extremely large clusters
 > Where: LLNL, ISP’s, DoD
 > Strengths: security, networking, modifiability, WAN features
A Lustre Cluster

- MDS disk storage containing metadata targets (MDT)
- Pool of clustered MDS servers 1-100
- Lustre Clients 1 - 100,000
- Simultaneous support of multiple network types
- Router
- GigE
- OSS servers 1-1000s
- OSS storage with object storage targets (OST)
- Commodity Storage
- Shared storage enables failover OSS
- Enterprise-Class Storage Arrays and SAN Fabric

= failover
How does it work?

File open

Directory Operations, file open/close metadata, and concurrency

MDS

Recovery, file status and file creation

OSS

File I/O and file locking

Clients

LOV
Lustre Stripes Files with Objects

• Currently objects are simply files on OSS resident file systems
• Enables parallel I/O to one file
 > Lustre scales that to 100GByte/sec to one file
Vision

<table>
<thead>
<tr>
<th>Facet</th>
<th>Activity</th>
<th>Difficulty</th>
<th>Priority</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Quality</td>
<td>Major work is needed except on networking</td>
<td>High</td>
<td>High</td>
<td>2008</td>
</tr>
<tr>
<td>Performance fixes</td>
<td>Systematic benchmarking & tuning</td>
<td>Low</td>
<td>Medium</td>
<td>2009</td>
</tr>
<tr>
<td>More HPC Scalability</td>
<td>Clustered MDS, Flash cache, WB cache, Request Scheduling, Resource management, ZFS</td>
<td>Medium</td>
<td>Medium</td>
<td>2009-2012</td>
</tr>
<tr>
<td>Wide area features</td>
<td>Security, WAN performance, proxies, replicas</td>
<td>Medium</td>
<td>Medium</td>
<td>2009-2012</td>
</tr>
<tr>
<td>Broad adoption</td>
<td>Combined nNFS /Lustre exports</td>
<td>High</td>
<td>Low</td>
<td>2009-2012</td>
</tr>
</tbody>
</table>

Note: These are visions, not commitments
Lustre
ZFS-DMU
Lustre & ZFS

- **User space!**
 - DMU talks to block devices
 - OSS / MDS talks to DMU
 - ztest and FUSE work similarly
 - LNET: user space or kernel

- **OSS / MDS**
 - Will write ZFS formats on disk
 - Like we currently write ext3
 - Use DMU API’s for transactions

- **DMU**
 - Already ported to Linux, OS X
Lustre

pNFS
pNFS & Lustre

• pNFS integration
• Soon – pNFS exports from Lustre on Linux
 > First participation in a Bakeathon by Lustre!
• Longer term possibilities
 > Let Lustre servers offer pNFS & Lustre protocol
 > Requires an interesting Lustre storage layer
 > Make LNET an RDMA transport for NFS?
 > Offer proven Lustre features to NFS standards efforts
Layered & direct pNFS

pNFS layered on Lustre Clients

Lustre Servers (MDS & OSS)

Lustre Client FS Global Namespace

pNFS and Lustre servers on Lustre / DMU storage system
Lustre
flash cache
Flash cache

- Exploit storage hardware revolution
 - Very high bandwidth available from flash
 - Add Flash Cache OSTs—capacity ~ RAM of cluster
 - Cost: small fraction of cost of RAM of cluster
- Fast I/O from compute node memory to flash
- Then drain flash to disk storage - ~ 5x slower
 - E.g. cluster finishes I/O in 10 mins, on disk in 50 mins
 - Need 5x fewer disks
- Lustre manages file system coherency
Flash Cache interactions

READ:
- OSS – forces FC flush first

WRITE – all writes to Flash Cache

DRAIN – put data in final position
Lustre
client write back cache
Metadata WBC & replication

• **Goal & problem:**
 > Disk file systems make updates in memory
 > Network FS’s do not - metadata ops require RPCs
 > The Lustre WBC should only require synchronous RPCs for cache misses

• **Key elements of the design**
 > Clients can determine file identifiers for new files
 > A change log is maintained on the client
 > Parallel reintegration of log to clustered MD servers
 > Sub-tree locks – enlarge lock granularity
Uses of the WBC

- **HPC**
 - I/O forwarding makes Lustre clients I/O call servers
 - These servers can run on WBC clients

- **Exa-scale clusters**
 - WBC enables last minute resource allocation

- **WAN Lustre**
 - Eliminate latency from wide area use for updates

- **HPCS**
 - Dramatically increase small file performance
Lustre with I/O forwarding

FW servers should be Lustre WBC enabled clients
Lustre

data migration & file system replication
Migration – many uses

• Between ext3 / ZFS servers
• For space rebalancing
• To empty servers and replace them
• In conjunction with HSM
• To manage caches & replicas
• For basic server network striping
Migration

Coordinator

Virtual Migrating MDS Pool

MDS Pool A

MDS Pool B

Virtual Migrating OSS Pool

OSS Pool A

OSS Pool B

Data Moving Agents
General purpose replication

- Driven by major content distribution networks
 - DoD, ISPs
 - Keep multi petabyte file systems in sync
- Implementing scalable synchronization
 - Changelog based
 - Works on live file systems
 - No scanning, immediate resume, parallel
- Many other applications
 - Search, basic server network striping
Lustre
server caches & proxies
Caches / proxies

• Many variants
 > HSM – Lustre cluster is proxy cache for 3rd tier storage
 > Collaborative read cache
 > Bit-torrent style reading or
 > When concurrency increases use other OSS’s as proxies
 > Wide area cache – repeated reads come from cache

• Technical elements
 > Migrate data between storage pools
 > Re-validate cached data with versions
 > Hierarchical management of consistency
Collaborative cache

Scenario:
- All clients read one file
- Initial reads from primary OSS
- With increasing load – redirect
- Other OSS’s act as caches
Proxy clusters

Local performance after the first read