Lustre User Group 2009
Lustre 1.8 Features

Nathan Rutman
Sun Microsystems
Lustre 1.8 Goals

Focus: deliver a modest maintenance release
- Conservative new features
- Performance & scalability improvements
- Reliability/recovery improvements
- Forward interoperability with Lustre 2.0

Target scale: ORNL Jaguar Cluster
- 10.5PB storage; 240 GB/s I/O throughput goal
- 265,708 processor cores
1.8 Features List

- Adaptive Timeouts
- OSS Read Cache
- Version-Based Recovery
- OST Pools
- 2.0 Conversant (client interop)
- Performance Improvements
Adaptive Timeouts

- Use an adaptive mechanism to set RPC timeouts.
- RPC service time histories are tracked on all servers, and are reported back to clients.
- Clients use this to set future RPC timeout values.
- Early replies prevent timeouts if estimate is incorrect.
Adaptive Timeouts Benefits

• Relieves users from having to tune the obd_timeout value.
• Reduces RPC timeouts and disconnect/reconnect cycles.
• Enabler for speedier recovery
• Watchdog timers adapt also
• Scenarios:
 • Slowly changing server loading or network congestion
 • Sudden server / network loading
OSS Read Cache

• Provides read-only caching of data on an OSS.

• Improves Lustre performance when several clients access the same data set, and the data fits the OSS cache.

• Low overhead of OSS read cache. No performance impact due to cache misses.
OSS Read Cache Benefits

- Allows OSTs to cache read data more frequently
- Improves repeated reads to match network speeds instead of disk speeds
- Provides the building block for OST write cache (small write aggregation).
- Scenarios
 - diskless clients booting from lustre
 - nodes sharing data (3d rendering)
OSS Read Cache Metrics

- Two clients accessing same file:
 - no cache: 77 MB/s
 - with cache: 390 MB/s
- Single client access lots of small files:
 - no cache: 148.6s
 - with cache: 35.7s
Version Based Recovery

Current Recovery
- Requires all clients to replay transactions in original order
- If all clients don't reconnect during recovery window, recovery is aborted

Version Based Recovery
- Allows replay of independent transactions, even with missing clients
- Version conflicts will require client state to be reset
- Soon: delayed clients can reconnect after the recovery window and replay independent transactions
Version Based Recovery

Benefits

• Improves the robustness of client recovery operations
• Not all clients are evicted if some miss recovery
• Allows Lustre recovery to work even if multiple clients fail at the same time as the server, if the remaining clients are working independently
• Provides a building block for disconnected client operations
OST Pools

- Pools provide a method to specify an arbitrary group (instead of an index range) of OSTs for file striping purposes
 - Fast vs. slow disks
 - Local network vs. WAN
 - JBOD vs. RAID
 - Specific OSTs for users/groups/applications (by directory)
- Thanks to CEA
OST Pools Benefits

- Allows sets of OSTs to be selected via named groups
- Easier disk usage policy for administrators
- Hardware can be more closely optimized for particular usage patterns
- Pools can separate heterogeneous OSTs within the same filesystem
- Human-readable stripe mappings

`lfs setstripe --pool scratch /mnt/lustre/workdir`
Client Interoperability

- Enables Lustre 1.8 clients to work with the new network protocol that will be introduced in the 2.0 release.
- Transparent client, server, network and storage interoperability during migration from 1.6-based clusters to clusters with 2.0-based servers.
- When Lustre 2.0 is released, perform a 'live' upgrade from 1.8 to 2.0 without needing to shut down the system.
Client Interoperability Benefits

• Live upgrade path from 1.6 to 2.0 via 1.8
• Full mixed client / server interop between 1.6 and 1.8
• 1.8 clients work with 2.0 servers
• Shutdown notification
 • Server notifies clients of impending shutdown
 • Clients flush buffers and block ops, simplifying recovery
Performance Improvements

- Client-side SMP performance improvements
 - Decrease superblock contention
 - 5x write improvement on multi(8)-core servers (bonnie, iozone)

- Async Journal Commit on Write
 - Reduces disk seeks in case of limited or disabled write-behind cache on block devices
 - 2-4x write improvement for sequential data streams from a small number of clients (vs 2x for external journal)
Performance Improvements -- coming soon

- LNET SMP Scaling 15379
 Add finer-grained locking into LNET to allow more parallelized ops
- Long-Haul (WAN tuning) 15983
Thank you

THANK YOU