
AUTO-TIERING IN CLUSTERSTOR

LUG 2024

• Feature Overview – what and why
• Architectural Framework – components, interactions
• Practical Usage – what users see, how they interact
• Roadmap – where are we going

TOPICS COVERED

3

FEATURE DRIVERS

• Lustre commands not easily usable by non-expert end users
• Must automate repetitive tasks

Managing Lustre filesystems
at scale is challenging

• Other open-source tools
• Lots of scripting

Customers typically have to
supplement Lustre

• Flash and HDD are separate pools requiring a-priori placement control

Hybrid storage adds an
element of management

complexity

• Optimize storage performance vs cost
• Automation based upon unique policies and schedule
• Require less end-user Lustre expertise

What the market wants

WHAT IS CLUSTERSTOR AUTO-TIERING?

Indexing

Policy
management

Scalable
Search
Engine

Policy Agents

Tiering Services
(Running on the SMU)

Metadata

Tier 2
Disk

Tier 1
Flash

Embedded
Index

extensions

Lustre namespace

OSS/OST
OSS/OST

OSS/OST
OSS/OST

OSS/OST
OSS/OST

OSS/OST
OSS/OST

HPE Cray Supercomputing
Storage Platform

“Within the file system”
tiering and file search index
for active data

Enables I/O acceleration for
HPC jobs
• Purpose-built for Lustre
• Embedded FS Index
• Optimized search
• Customizable policies
• Data movement via policy
• Optional scale-out data

movers

• HPE Cray Supercomputing
Storage Auto-Tiering software
runs on the SMU

• Data Mover function is part of the
SMU

• A base product offering
• Up to 20 GB/s performance for

data migration

• Up to 5 additional Utility Nodes
• Scale indexing and policy runs
• Additional +20 GB/s data

movement each

• Cost Optimized
• Simple to install and manage

Scaling is Dependent on system configuration and
number of flash units

4

Searchable, scalable metadata database

• Need to efficiently find files for movement policies
• Find / lfs find are much too slow, don’t scale
• External scalable DB storage is expensive

Use Lustre to store DB!
Distribute database shards for parallelized indexing, optimized DB sizes

• Incremental database updates when directories change
Utilize Lustre changelogs for efficient focus
And/or periodic, policy-defined full/incremental updates

• Query can be executed directly, on any Lustre client
We provide an RPM in the filesystem
Database shard file permissions control access
CSV or JSON output
Can operate on each file, thread-parallel

5

INDEXER AND QUERY

6

Run Query on any Lustre client to find files matching specific criteria
• All files in Flash pool
query --json -C fullpath,uid,gid,sizemib -w "poolname='flash'" /lus

• Files less than 1MB in disk pool
query -C relativepath,size,atime,poolname -w "poolname='disk'" -w "size < 1048576" --limit 100 /lus

• Files in flash pool in directory subtree ‘moonshot’ that are over 10 days old
query --json -C fullpath,sizemb,mtime -w "mtime < $(($(date +%s)-24*60*60*10))000000000"
/lus/projects/moonshot/

• Files starting with ‘ftzz’ on OST1
query -C relativepath,uid,size,ostindices -w "name LIKE 'ftzz%’” –w "ostindices = ':1:’” /lus

• Files on OST 2 or 3 but not in flash pool
query --json -C fullpath,poolname,ostindices -w "poolname NOT LIKE '%flash%'" -w "ostindices LIKE '%:2:%'
OR ostindices LIKE '%:3:%'" --limit 2 /lus/users
{"fullpath":"/lus/users/sean/indexing_test/tesdir17027/tesfile0", "ostindices":":2:", "poolname":"none"}

{"fullpath":"/lus/users/sean/indexing_test/tesdir17027/tesfile1", "ostindices":":3:", "poolname":"none"}

QUERY TOOL

Automation and query scale-out

7

POLICY ENGINE

• Policies
• Describe actions to take ➪ ”When that happens, do this”
• Can be defined by Admins or Users
• Rich Robinhood-like definitions
• Also stored in the filesystem

• Trigger Agent
• Monitors filesystem for triggering events (eg capacity

threshold)
• Flexible trigger conditions
• Partitions search space amongst query agents

• Query Agent
• Finds files that meet policy criteria
• Operates (action) on each file

• Indexing Agent
• Updates database indexes
• Based on changelogs
• And/or directory mtime changes
• And Query’s verification failures

Actions to take upon triggering

• When invoked directly, Query tool lists matching files (but see --exec and --delete)

• Enhanced behavior when invoked via a policy:
• Parallelized, scale-out operation on fileset partitions
• Simplified invocations for migrate, report generation

• Indexing directives are sent to parallel Indexing Agents

8

POLICY DIRECTIVES

Directive Name Description

Migrate Migrate files from one layout (eg OST pool) to another

Delete Delete files from namespace based on criteria

Report Create CSV or JSON reports of filesets

Exec Perform administrator-defined functions on files

Incremental_index Update a filesystem subtree based on changes in directory mtime

Full_index Update all subdirectories in a filesystem subtree

9

• Flash tier hygiene
• Scrub old files
• Regular usage reports
• Rebalance OSTs
• Drain a failing OST
• Change owner of *.data files in projtree
• Restripe large files into multiple OSTs
• Fun DB things

• Top 10 directories by file count
• Top 10 largest files in flash
• List recently created, single-striped files > 1 TB
• File size histogram

SOME USES

• Policies must be stored in a designated directory
• The files must have a .plc extension
• Multiple policies can be created
• Administrators control access
• Allow or disallow others to create policies
• Policies run under the UID of the policy file owner

10

SETUP

1. Enable on ClusterStor management node
> cscli lustre tiering enable

2. Configure changelogs if desired

3. Store policies in <lus>/.cray/cds/policies/*.plc

Execute queries on any node – we provide RPM:
> rpm -i --nodigest <lus>/.cray/cds/tools/*/cds-brindexer-tools-*.rpm
> /opt/cray/brindexer/bin/query -h

• Tier maintenance
• Purge old files
• Reports
• Exec

11

USE CASES # cat /mnt/lustre/.cray/cds/policies/mygrate.plc
fileclass largeflash {

definition { size > 100MB and pool = flash }
}
flash_migrate_rules {

rule migrate_large {
target_fileclass = largeflash;
action = migrate;
action_params {

migrate_pool = disk;
}
condition { last_modified > 2d }

}
}
flash_migrate_trigger {

check_interval = 600;
trigger_on = pool_usage(flash);
high_threshold_pct = 75%;

}
define_policy flash_migrate {}

• All files striped in the ‘flash’ pool and larger than 100MB will be migrated to the ‘disk’ pool
• Verify the condition that the last modified time for each file is more than 2 days old (file stat

just before migrating)
• Triggered if the space used in the flash pool is > 75%, check every 10 mins

• Tier maintenance
• Purge old files
• Reports
• Exec

12

USE CASES # cat /mnt/lustre/.cray/cds/policies/report_purger.plc
fileclass purge_reports {

definition { tree = admin/reports and name = purge-* }
}
purge_reports_rules {

rule purge {
target_fileclass = purge_reports;
action = delete;
action_params {

New report on purged purge reports
report_path = admin/reports/purge-reports

}
condition { last_modified > 7d }

}
}
purge_reports_trigger {

trigger_on = schedule("5 3 * * *");
partition_count = 1;

}
define_policy purge_reports {}

• Delete files under <mnt>/admin/reports/ tree named purge-*
• Report the deleted files as admin/reports/purge-reports/<policyinfo>-<date>
• Run daily at 3:05 UTC

• Tier maintenance
• Purge old files
• Reports
• Exec

13

USE CASES # cat /mnt/lustre/.cray/cds/policies/checksummer.plc
fileclass files {

definition { tree = datadir and size >= 1kib }
}
shas_rules {

rule shareport {
target_fileclass = files;
action = exec;
action_params {

report_path = reports;
exec_command = /usr/bin/sha256sum;

}
condition { last_modified > 1d and last_access > 1d; }

}
}
shas_trigger {

partition_count = 1;
trigger_on = schedule(once);

}
define_policy shas {}

• Calculate sha256 on recent files in datadir.
• Store output in per-run files under reports
• Run when the policy file is touched.

14

DATABASE PLACEMENT

• Index shards placed at Level 0 &
2 by default

• Auto-split every 2 levels deeper
if needed (>5B, configurable)

• Shard placement can be steered
by ‘level’ file in .dbindex dir

• Shard .dbindex dirs owned by
parent

Level0

Level1

Level2

Level3

/

.dbindex/ Users/

Jane/

.dbindex/ contracts/

subcontracts/

electric

log.txt

Joan/

.dbindex/ sims/

enviro

Projects/

POSIX-based trust is simple, flexible, predictable

• Admin-configurable database access params
• Users must have .dbindex directory access to see

shards at all
• Must have access to traverse to the parent dir
• Must have dirmode access (owner or group member or

world) to .dbindex
• Users must also have shard read perms to see

entries in shard (uid/gid/mode)

15

SECURITY
Database control Default

(open)
Ex. Restrictive

dbindex_uid 0 cstor

dbindex_gid 0 searchers

dbindex_mode 0644 0640

dbindex_dirmode* 0755 0750

• Parent owner decides which others can see their shards
• No access to dir = no access to shard
• Access can be changed per-shard at any point

• Admin decides who can read shard contents (file info)
• Admin only, limited group, or anyone with dir access

* .dbindex dir owner is always parent, so they can delete
shard - but not necessarily see contents

Policy file security
• Access to the policy directory

• Admin sets ugw r/w
• Ownership of policy files

• Policies run under policy file’s uid/gid
• Can’t navigate permissionless dirs
• Can’t operate on permissionless files

16

PERFORMANCE

• All operations scale out across SMU + Utility nodes
• Multiple shards enable parallelized index writers
• Changelog readers are assigned round-robin to MDTs
• Filesets are partitioned across Query Agent instances for parallel policy operations

• User queries are confined to deepest shard location containing search tree
• Eg query -C fullpath,size -w "size < 1048576" /lus/Users/Jane will only

search shards below /lus/Users/Jane/
• User queries run in parallel across shards

Metric Per-node value*

Indexing 50,000 files/s

Query 500,000 files/s

Migration 20GB/s (200Gbps HSN)

Migration 3,900 files/s

Delete 44,000 files/s

*Performance of course depends
on many factors: fabric speed,
MDT/OST counts, DB placement,
search keys, etc.

query -v > /dev/null
level=info msg=Records found: 16489473
level=info msg=Result rate (records/sec): 543095
level=info msg=Time elapsed: 30.362s

CONFIDENTIAL - FOR TRAINING PURPOSES ONLY 17

INTEGRATED CLUSTERSTOR MONITORING

ROADMAP

18

CDS 2.2.2

Robust fixes for
large-scale
customers

No further updates
planned

CS 6.5

Single-node
operations on SMU

CS 6.6

Scale-out indexing
and query actions,

both SMUs plus
utility nodes

Future

Improved indexing
performance

More flexible
database

placement

Integrate parallel
copy tools

THANK YOU

thomas.jabas@hpe.com

19

20

• ClusterStor Admin Guide:
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=index.html

• Tiering and Scalable Search Use Cases -
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6A832A4B-
FD0F-406A-A5D8-71095B317B27.html

• Policy file syntax:
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-A9EE2B04-
C3DB-4F53-96C2-5CC3940F8CEC.html

• Query examples:
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6969ABB9-
BA97-4716-95BC-B0AEFC59A70B.html

ADDITIONAL RESOURCES

https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=index.html
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6A832A4B-FD0F-406A-A5D8-71095B317B27.html
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-A9EE2B04-C3DB-4F53-96C2-5CC3940F8CEC.html
https://support.hpe.com/hpesc/public/docDisplay?docId=sd00001354en_us&page=GUID-6969ABB9-BA97-4716-95BC-B0AEFC59A70B.html

21

• Summary tool is run on a client, e.g. secondary management node, and displays bulk statistical
information about the entire file system

root@kjlmo1301 ~]# summary /run/lustre_tiering/mountpoint/
Total link count: 0
Total dir count: 1191
Total file count: 2258497
Total file size: 143801198627058
Total file objects: 2259688
Maximum file size: 549755813888
Minimum file size: 168
Maximum mtime: 1696013375000000000
Minimum mtime: 1690318619000000000
Maximum ctime: 1696187481000000000
Minimum ctime: 1695064297000000000

Time elapsed: 640ms

SUMMARY TOOL

Histogram of file sizes

> query -v --header -q "select (length(size)-1) AS bin,count(size) as
count,sum(size) as sum from entries_0 group by bin" /lus | awk -F"," 'OFS="," {if
(NR == 1) {print $0} else {groups[$1]; count[$1]+=$2;sum[$1]+=$3}} END {for (grp
in groups) {print "10^"grp, count[grp], sum[grp]}}' | column -s, -t -R 2,3
level=info msg=Records found: 1799
level=info msg=Result rate (records/sec): 26
level=info msg=Time elapsed: 1m7.856s
bin count sum
10^0 487622301 467420362
10^1 49435 2689221
10^2 493324 270935066
10^3 68981346 279920926293
10^4 27963 419989129
10^5 49 17777591
10^6 28 117812880
10^7 13 164978712
10^8 1 135266304
10^9 280 300647710720

22

QUERY POWER USER

• Roll up file info in each DB shard
• Aggregate shard summaries
• Pretty-print output
➪ size histogram of half billion files in 68
seconds = 7.4M files/s

23

• Tiering is disabled by default. To enable tiering, from the primary management server on ClusterStor System
[root@mgmt00 ~]# cscli lustre tiering enable
Tiering has been enabled.

• We recommend enabling Changelogs for more efficient updates to the index
• Secondary management server runs Auto-Tiering software
• 5 additional utility nodes can be added for additional data migration and purge bandwidth. Managed by ClusterStor, on

into the internal management network
[root@mgmt00 ~]# cscli show_new_nodes

Hostname/MAC IPMI Free arrays Assigned arrays Pass/Fail HW profile

* 04:32:01:5A:7A:1C 172.16.0.109 N/A N/A Passed custom node
* 04:32:01:5A:7B:54 172.16.0.110 N/A N/A Passed custom node

[root@mgmt00 ~]# cscli configure_hosts -m 04:32:01:5A:7A:1C --hostname kjlmo1308 --location
R1C1/10U --role datamover && cscli configure_hosts -m 04:32:01:5A:7B:54 --hostname kjlmo1309 --
location R1C1/11U --role datamover

• Once the above command completes, the two additional data movers are automatically added to the tiering configuration
and will be used going forward

• The system now had 3 total data movers: the integrated management node plus 2 external data movers
• Install user tools if desired
> rpm -i --nodigest <lustre_mount>/.cray/cds/tools/*/cds-brindexer-tools-*.rpm

SETTING UP CLUSTERSTOR TIERING AND ADDITIONAL DATA MOVERS

