
© 2018 Cray Inc.

LUG 2019 Deve lope r

Summi t

nrutman@cray.com

© 2018 Cray Inc.

Fast ‘ ls – l ’

© 2018 Cray Inc.

• ls –l
• Slurp MD into external DB (every policy engine in the world)
• Generally want layouts also
• In almost all use cases lazy stats are fine

• Polling for size/mtime would be a single file, not a full dir

Get all the metadata for every file in this directory

© 2018 Cray Inc.

• Non-lazy size, mtime, atime
• Serialized operations

opendir
readdir

foreach file in dir
stat path
list xattr

foreach xattr
getxattr

closedir

Problems

© 2018 Cray Inc.

• In the past: POSIX. Statahead. Keep syscall pipeline.
• Continuing down that path:

• Readdir+? xgetdents?
• Pre-fetch all getdents()+stat()[+getxattr()] into the client cache

• Fuck that. Let’s just optimize our 1 use case.
• Special ioctl(dir, flags) to read all the dirents, all the stats, and (optionally) all

the xattrs, and return a big bulk blast from 1 RPC
• Need to page through a bulk buffer - ioctl(GETNEXTPAGE)? read a virtual

file?
• In parallel to all DNE dir shards (don’t care about ordering)
• Write a “lfs ls”. PEs can call the ioctl directly.

What can be done?

© 2018 Cray Inc.

Lust re for Long-
Term Storage
Feasibility and Interest

© 2018 Cray Inc.

• Current:

• Custom, unusual hardware $$$

• Focus on performance use cases

• Future?

• Fastest tiers will NOT be Lustre (pmem)

• Still need spinning / streaming bulk transport

• Even larger scales – but without top
performance requirements

• Or cede the market to Ceph…

Lustre design point

© 2018 Cray Inc.

• Disks / SSDs getting larger
• RAID sets are too big

• Too costly for entry point
• Too slow to rebuild
• Too large for ldiskfs

• Dual-ported disks are restrictive
• Limited production $$
• HA PITA

• Custom enclosures
• $$
• Long development cycles

Lustre for bulk: hardware

© 2018 Cray Inc.

• No dependence on resilient HW

• Lustre live mirror/EC

• Continuous availability (not blocked by failover)

• Tunable (per file) availability / durability

• More, smaller OSTs (increase OST count limits)

• Fail-out instead of failover – dynamically add and remove OSTs

Requirements

© 2018 Cray Inc.

• Lustre live mirroring
• Lustre EC

• Verify on read, DI checks
• CRUSH layouts for fail-out?
• Algorithmic or bitmap layouts to specify larger OST lists
• Larger configs
• File version access, snapshots with ZFS
• Encryption at rest
• API for data management

• migrate, mirror, retire, replace
• Relaxed POSIX – just an archive (but fast, unlike cloud)
• New allocators – fullest-first + spindown
• Break namespace function from layout / accounting / quotas

Possible Features

