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MapReduce 
l  A simple data processing model to process big data 
l  Designed for commodity off-the-shelf hardware components. 
l  Strong merits for big data analytics  

l  Scalability: increase throughput by increasing # of nodes 

l  Fault-tolerance (quick and low cost recovery of the failures of tasks) 

l  YARN, the next generation of Hadoop MapReduce 
Implementation  
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High-Level Overview of YARN 

MRAppMaster 

•  Consists of HDFS and MapReduce frameworks. 
•  Exposes map and reduce interfaces. 

v ResourceManager and NodeManagers  
v MRAppMaster, MapTask, and ReduceTask. 
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Supercomputers and Lustre* 
•  Lustre popularly deployed on supercomputers 

•  A vast number of computer nodes (CN) for computation 

•  A parallel pool of back-end storage servers, composed 
a large pool of storage nodes 

Interconnect 

CN CN CN 
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Lustre for MapReduce-based Analytics? 
•  Desire 

–  Integration of Lustre as a storage solution 
–  Understand the requirements of MapReduce on data 

organization, task placement, and data movement, and 
their implications to Lustre 

•  Approach: 
–  Mitigate the impact of centralized data store at Lustre 
–  Reduce repetitive data movement from computer nodes 

and storage nodes 
–  Cater to the preference of task scheduling and data locality 

*other names and brands may be claimed by others 
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Overarching Goal 
•  Enable analytics shipping on Lustre* storage servers 

–  Users ship their analytics jobs to SNs on-demand 

•  Retain the default I/O model for scientific applications, 
storing data to Lustre 

•  Enable in-situ analytics at the storage nodes 

Simulation 
Output 

Analytics 

Shipping 

3 

*other names and brands may be claimed by others 

 



LUG  - S7 

Technical Objectives 
•  Segregate analytics and storage functionalities 

within the same storage nodes 
–  Mitigate interference between YARN and Lustre* 

•  Develop a coordinated data placement and task 
scheduling between Lustre and YARN 
–  Enable and exploit data and task locality 

•  Improve Intermediate Data Organization for 
Efficient Shuffling on Lustre 

*other names and brands may be claimed by others 
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YARN and Lustre* Integration  
with Performance Segregation  
•  Leverage KVM to create VM (virtual machine) 

instances on SNs 

•  Create Lustre storage servers on the physical 
machines (PMs) 

•  Run YARN programs and Lustre clients on the VMs 

•  Placement of YARN Intermediate data  
–  On Lustre or local disks? 

KVM 
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Running Hadoop/YARN on KVM 
•  50 TeraSort jobs, 1GB input each. One job submitted every 3 seconds,  

•  There is a huge overhead caused by running YARN on KVM. 

•  Running IOR on 6 other machines. The impact is not very significant. 
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4.9% 6.8% 

KVM configuration on each node: 
u 4 cores, 6 GB memory. 
u Using a different hard drive for Lustre*. 
u Using a different network port 
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KVM Overhead 
•  4 cores are not enough for YARN jobs 

•  6 cores help improve the performance of YARN 

•  Increasing memory size from 4GB to 6GB has little effects when 
number of cores is the bottleneck 
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YARN Memory Utilization 
•  Running Yarn on the physical machines alone. 

•  NodeManager is given 8GB memory, 1GB per container, 1GB heap per task.  
•  HDFS with local ext3 disks. Intensive writes to HDFS (via local ext3) 
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Intermediate Data on Local Disk or Lustre* 
•  Place intermediate data on local ext3 file system or Lustre, which is 

mapped to KVM (yarn.nodemanager.local-dirs).  

•  Yarn and Lustre Clients are placed on the KVM, OSS/OST on the 
Physical Machine 

•  Terasort (4G) and PageRank (1G) benchmarks have been measured 
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Data Locality for YARN on Lustre* 
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Background of TeraSort Test 

•  Four cases being compared 
–  Intermediate Data on Lustre* or Local disks 
–  Scheduling Map tasks with or without data locality 
–  lustre_shfl_opt: (on lustre, with locality) 
–  lustre_shfl_orig: (on lustre, without locality) 
–  local_shfl_opt: (on local disks, with locality) 
–  local_shfl_orig: (on local disks, without locality) 

•  Test environments 
     -- Lustre 2.5 with dataset from 10GB to 30GB and 128MB stripe  
         size and block size 

*other names and brands may be claimed by others 
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Average Number of Local Map Tasks 

•  local_shfl_opt and lustre_shfl_opt achieve high locality  
•  The other two have low locality. 
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Terasort under Lustre* 2.5 

•  On average, local_shfl_orig has best performance 
•  lustre_shfl_opt is in the middle of best case and worst case;  
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Data Flow in Original YARN over HDFS 
•  This figure shows all of the Disk I/O in original Hadoop 
•  Map Task: Input Split, Spilled Data, MapOutput 
•  Reduce Task: Shuffled Data, Merged Data, Output Data 
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Data Flow in YARN over Lustre* 
•  This figure shows all of the Disk I/O of YARN over Lustre 
•  Avoid as much Disk I/O as possible 
•  Speed up Reading Input data and Writing Output data 
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New Implementation Design Review 
•  Improve I/O performance 

–  Read/Write from/to local OST 
–  Avoid unnecessary shuffle spill and repetitive merge 
–  After all MapOutput has been written, launch reduce task to read data 

•  Avoid Lustre* write/read lock issues? 
•  Reduce Lustre write/read contention? 

•  Reduce network contention 
–  Most of data is written/read from local OST through virtio bridged network 
–  Reserve more network bandwidth for Lustre Shuffle 
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Evaluation Results 
•  SATA Disk for OST, 10G Networking, Lustre* 2.5 
•  Running Terasort Benchmark, 1 master node, 8 slave nodes 
•  Optimized YARN performs on 21% better than the original YARN 
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Summary 

•  Explore the design of an Analytics Shipping 
Framework by integrating Lustre* and YARN 

•  Provided End-to-End optimizations on data 
organization, movement and task scheduling for 
efficient integration of Lustre and YARN 

•  Demonstrated its performance benefits to 
analytics applications 

*other names and brands may be claimed by others 
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