ORACLE

LUG 2024: Hybrid 10 Update

Hybrid 10, or the new client data path

Patrick Farrell
Principal Engineer
OCI Storage

May, 2024

W O AN /S AR TRRRE

&

Lustre: Hybrid 10 — A New Lustre Data Path

* Hybrid IO is a new data path for the Lustre client.
e Hybrid 10 combines buffered and direct |0, getting the best of both

* Today we’ll talk about...
* What Hybrid 10 is...
e And exactly what’s in Lustre 2.16

Data Path

* Data Path: How data moves between program memory and storage
* “What does the file system do when you call read() orwrite()?”

* Data flows from userspace, into Lustre client, through the network, and to storage
(on write, and opposite on read)

* POSIX gives two ways to do data I/O:

* Buffered 1/0O
* Direct I/O

Buffered 1/0

* Buffered means ‘Uses the page cache’
 All user data is copied through the page cache

* What's a page cache?
* An ordered set of pages in kernel memory which contain data from a file
* Shared between all processes using a file

* Tracked with a cousin of the classic binary tree

* Pages are created; inserted into cache; then data is copied to the page
* Copied from userspace for writes
* Copied from storage for reads

* Copying into the page cache aligns data; allows a 1-to-1 mapping to storage
 Storage and RDMA require aligned data for good performance

Buffered 1/0

* Pros — Flexible:
* Allows any I/O — no memory alignment requirements for userspace

* Allows read ahead and write aggregation
* Converting small application I/O to large 1/O on disk

» Async writes and readahead are perfect for hiding latency of slow devices (HDD)
* Cons— Not scalable:

e Significant overhead for cache management
* Low single stream performance (max 1-3 GiB/s)
* Minimal multi-process scalability due to locking

Direct 1/0

* Direct I/O means ‘Direct from user memory, does not use the page cache’
* Very simple and clean — no locking required

* Pros—Scalable:
* \Very high single stream performance with large I/0 — 20+ GiB/s
* Scalable as processes are added (for I/0O to 1 file or to many files)

* Cons — Inflexible:

* Synchronous. 1/0 must go directly to disk, no async write or readahead
* Exposes latency of slow devices
e Can't do readahead or write aggregation
e Bad for small I/O

e Alignment requirement
* Size of I/O and location in memory must be a multiple of page size
* Can't be used without special effort from user program/libraries a

Buffered vs Direct: Performance with 1/0 Size

Bandwidth vs I/O Size: Write

25000 :
21.5 GiB/s
20000
15000
<
aQ
> ——DIO
10000 - Buffered
5000
1.2 GiB/s
Details on next slide
— - 41743’ — d - - — —_—
0 L e — ——

4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

7 Vot E

Buffered vs Direct: Performance at Small Sizes

1800

1600

1400

1200

1000

MiB/s

800

600

400

200

396 MiB/s

/

! 16 MiB/s

—
4K

16K

Bandwidth vs I/O Size: Write

N

64K
1/O Size

256K

1M

——DI|O

== Buffered

Buffered vs Direct: Summary

Small 1/O Performance \/ X

Large I/O Performance
Many Processes

High latency Storage (HDD)

Unaligned 1/0

< <X X

Buffered + Direct: Let’s have it all

10

Strengths and weakness of buffered 1/0O and direct I/O pair up perfectly

Use buffered 1/O for small I/O and direct 1/O for large I/O

e Userspace can do this, but requires application modification

Can we dynamically select the 10 type to use inside the file system?

Ah, but alighment requirements...

e Can’t do arbitrary I/O as direct 1/O, because 1/O isn’t necessarily memory or size aligned.

Must be aligned for good performance with RDMA and read/write from/to storage
* Unaligned RDMA and disk I/O can be done, but at significant cost

Buffered I/O is aligned by copying into the page cache
Direct I/O must be aligned in userspace by application

User Memory & the Page Cache

User Memory:
User View Y e 19
User Memory:
Physical Order 2t J 1=3 < - S
Page Cache:
File Order 0 1 2 3 4 5 6 7 8 9 10

Storage 0 1 2 3 4 5 6 7 8 9 10

Aligned User Memory & Direct I/0O

User Memory:

BEBABRASRARR
T b

Getting Alignment: Caches vs Buffers

* Page cache gives you alignment, but is very expensive

* Copies unaligned data in to aligned pages

* A cache can be used repeatedly & accessed from multiple threads

e Requires lots of concurrency management and locking

* Most cost of cache is not in data copying — cost is in cache setup

But copying to aligned pages is what gets you alignment — no need for a cache

13

Unaligned DIO: Buffer, no cache

14

To get alignment:

 Allocate an aligned buffer

» Copy data to/from the buffer
* Do direct I/O from the buffer

/0 is still synchronous — when write() returns, 1/O is complete
Buffer isn't accessible from other threads
No need for cache setup or locking

Reference: Page Cache Locking

Process 1 > < Process 2

\ 4 v

Read [0-3] (Read [4-10])

Write Lock

ey

K
. Pages in Cache

Pages not in Cache

Read Lock

Pages 4-10 aren’t in
cache, so we need a

Mapping Lock

(Page Cache)

“write lock to change the
. cache - even though
we’re just reading the
file.

Page Cache

Storage

Unaligned DIO: Buffers, but no cache

< Process 1 > (Process 2)
l The processes have
. separate buffers - no !
Read [0-3] Qead [4‘1@ 'shared cache - so they:!

\ can work in parallel

Kernel Buffers 0 1 2 3 4 5 6 7 8 9 10

L

Unaligned DIO = Hybrid I/0

17

Unaligned DIO allows any |0 as DIO

e Removes memory alignment requirement

* A little slower than regular DIO — But still very fast
* Enables hybrid 10

Hybrid 10:

e Use buffered IO for small 10
* Benefit from readahead and write aggregation

e Use unaligned direct IO for large 10
* Performance goes up with 1/0 size throughout
Let’s see what that looks like...

Notes on Numbers

* Most data gathered on an NVIDIA DGX, many CPUs and multiple NICs
* Shared file info gathered on dual socket OCl systems

* All numbers should be understood as general guidance — look at trends and relative
values, not specific numbers

18

Hybrid 10: Write Performance

Bandwidth vs I/O Size: Write

25000 .
19.6 GiB/s
—DIO
20000 -—-Buffered
——Hybrid
15000
=
2 16x
10000
5000 : 1.2 GiB/s
: 396 MiB/s
16 MiB/s
R i
0 e —
4K 16K 64K 256K 1M aM 16M 64M 256M 1G

I/O Size

Hybrid 10: Read Performance

Bandwidth vs I/O Size: Read

25000 .
20.1 GiB/s
——DIO '
20000 -=-Buffered
——Hybrid
15000
o 11x
S
10000
5000 1.0 GIB/S 1.8 GIB/S
22 MiB/s
0 — — —
4K 16K 64K 256K 1M 4M 16M 64M 256M 1G

/O Size

Hybrid 1/0 Performance

e Same as buffered at small sizes
* Uses unaligned DIO for larger sizes

* Max at 19 GiB/s — About 90% of DIO

* Compared to DIO, Unaligned DIO must:
 Allocate buffer memory
* Copy data to/from buffers

» Buffered 10 has to do these steps, but also cache setup
e But because it’s Direct 10, there’s no cache
* And we can do that allocation and copying in parallel.

* Hybrid 10 is also lockless, which has implications for shared file writes...

21

Single Client Shared File: Writes

80000

70000

60000

50000

@ 40000

MiB/s

30000

20000

10000

Bandwidth vs Processes: Shared File Write (Single Client, 4 MiB Writes)

——Hybrid
Buffered

1.7 GiB/s

67 GiB/s

52x

1.3 GiB/s

16 32 64 128

Processes E

Hybrid 10: Shared File — Multi-Client Write

23

Single client shared file write blocks on page cache locking

* Hybrid IO avoids this entirely

* But what about using multiple clients?

Multiple clients writing to a shared file is a well-known pain point
* Clients get Lustre distributed locks (LDLM) from the servers

* Multiple clients writing to the same file bounce the locks around
* Even if writes don’t overlap

* Write to one file doesn’t scale with more clients unless you do something special
* MPIIO, lockahead, overstriping, group locks...

But Direct |0 doesn’t use the cache... So clients don’t use LDLM locks.
» So for larger writes, neither does hybrid 10
* The effect of this is dramatic.

Multi-Client Shared File Writes

Bandwidth vs Process Count: Shared File Write (8 clients, 4 MiB writes)

91 GiB/s
100000
90000
-=-Buffered
80000
——Hybrid

70000

60000
. 22x
S~~~
o 50000
S

40000

30000

20000 :

: 4.1 GiB/s
1.7 GiB/s /
10000
0 G p 4 - N — —— = —i { } { |
1 (1 PPC) 2 (1 PPC) 4 (1 PPC) 8 (1 PPC) 16 (2 PPC) 32 (4 PPC) 64 (8 PPC) 128 (16 PPC)

Processes E

Hybrid 1/0 2023 vs Hybrid 1/0 2024

* Last year, parallel allocation and parallel data copy weren’t ready
* Hybrid 10 writes were at only 3 GiB/s (now 20 GiB/s)
e Hybrid 10 reads at 12 GiB/s max (now 20 GiB/s)

* Switched to page pools for allocations
* Borrowed from the compression & encryption code

* Added parallel copy for writes
* Thanks to Shaun Tancheff of HPE, who was instrumental in getting this working

25

Hybrid 10 in 2.16

26

Hybrid 10 is in Lustre 2.16
Automatically switch between buffered and direct 10 based on size

Opt-in for now — Must be enabled:
e Ictl set_param llite.*.hybrid = 1
 Some obscure bugs in testing, but passes all 10 consistency tests, etc

Aiming for gradual phase in

* On bydefaultin2.17

e Currently only switch based on IO size
e Switch in more situations as we are sure it improves performance
* eg, lock contention

* Also planning performance improvements...

Direct 10 and Hybrid 10 in 2.17+

* DIO path rewrite: LU-13814

e Convert DIO from complex CLIO pages to simple arrays
* No complex lists of dedicated structures for every page — just simple arrays
* Huge efficiency improvement

* Max single threaded DIO speed is 22 GiB/s today
e LU-13814 takes single threaded DIO to 100 GiB/s
* DIO improvements boost hybrid 10 performance
* Hybrid + LU-13814 = 45 GiB/s (from 20 GiB/s today)

27

https://jira.whamcloud.com/browse/LU-13814

Hybrid 10 Recap

28

Buffered 10 is:
* Good for small 10 (readahead, write aggregation)
* Poor for large IO (no scalability)

Direct 10 is:
 Terrible for small 10 (sync)

 Scalable for large 10
e Lockless

Hybrid 10: Automatically get the best of both

» Buffered performance for small reads & writes (20x improvement vs small DIO)
* DIO-like scaling for large reads & writes (~¥10x improvement vs large buffered)
* Solves shared file write problem on local node & across cluster (20-50x improvement)

Hybrid 10 is in Lustre 2.16, out later this year.

Thank you

Thank you for listening.
See LU-13805 for further details.

Questions to patrick.farrell@oracle.com

Thanks to Whamcloud and Oracle for supporting this work.

https://jira.whamcloud.com/browse/LU-13805
mailto:patrick.farrell@oracle.com

