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Lustre: Hybrid 10 — A New Lustre Data Path

* Hybrid IO is a new data path for the Lustre client.
e Hybrid 10 combines buffered and direct |0, getting the best of both

* Today we’ll talk about...
* What Hybrid 10 is...
e And exactly what’s in Lustre 2.16




Data Path

* Data Path: How data moves between program memory and storage
* “What does the file system do when you call read() orwrite()?”

* Data flows from userspace, into Lustre client, through the network, and to storage
(on write, and opposite on read)

* POSIX gives two ways to do data I/O:

* Buffered 1/0O
* Direct I/O




Buffered 1/0

* Buffered means ‘Uses the page cache’
 All user data is copied through the page cache

* What's a page cache?
* An ordered set of pages in kernel memory which contain data from a file
* Shared between all processes using a file

* Tracked with a cousin of the classic binary tree

* Pages are created; inserted into cache; then data is copied to the page
* Copied from userspace for writes
* Copied from storage for reads

* Copying into the page cache aligns data; allows a 1-to-1 mapping to storage
 Storage and RDMA require aligned data for good performance




Buffered 1/0

* Pros — Flexible:
* Allows any I/O — no memory alignment requirements for userspace

* Allows read ahead and write aggregation
* Converting small application I/O to large 1/O on disk

» Async writes and readahead are perfect for hiding latency of slow devices (HDD)
* Cons— Not scalable:

e Significant overhead for cache management
* Low single stream performance (max 1-3 GiB/s)
* Minimal multi-process scalability due to locking




Direct 1/0

* Direct I/O means ‘Direct from user memory, does not use the page cache’
* Very simple and clean — no locking required

* Pros—Scalable:
* \Very high single stream performance with large I/0 — 20+ GiB/s
* Scalable as processes are added (for I/0O to 1 file or to many files)

* Cons — Inflexible:

* Synchronous. 1/0 must go directly to disk, no async write or readahead
* Exposes latency of slow devices
e Can't do readahead or write aggregation
e Bad for small I/O

e Alignment requirement
* Size of I/O and location in memory must be a multiple of page size
* Can't be used without special effort from user program/libraries a




Buffered vs Direct: Performance with 1/0 Size

Bandwidth vs I/O Size: Write
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Buffered vs Direct: Performance at Small Sizes
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Buffered vs Direct: Summary

Small 1/O Performance \/ X

Large I/O Performance
Many Processes

High latency Storage (HDD)

Unaligned 1/0
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Buffered + Direct: Let’s have it all
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Strengths and weakness of buffered 1/0O and direct I/O pair up perfectly

Use buffered 1/O for small I/O and direct 1/O for large I/O

e Userspace can do this, but requires application modification

Can we dynamically select the 10 type to use inside the file system?

Ah, but alighment requirements...

e Can’t do arbitrary I/O as direct 1/O, because 1/O isn’t necessarily memory or size aligned.

Must be aligned for good performance with RDMA and read/write from/to storage
* Unaligned RDMA and disk I/O can be done, but at significant cost

Buffered I/O is aligned by copying into the page cache
Direct I/O must be aligned in userspace by application




User Memory & the Page Cache

User Memory:
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Aligned User Memory & Direct I/0O

User Memory:
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Getting Alignment: Caches vs Buffers

* Page cache gives you alignment, but is very expensive

* Copies unaligned data in to aligned pages

* A cache can be used repeatedly & accessed from multiple threads

e Requires lots of concurrency management and locking

* Most cost of cache is not in data copying — cost is in cache setup

But copying to aligned pages is what gets you alignment — no need for a cache
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Unaligned DIO: Buffer, no cache
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To get alignment:

 Allocate an aligned buffer

» Copy data to/from the buffer
* Do direct I/O from the buffer

/0 is still synchronous — when write() returns, 1/O is complete
Buffer isn't accessible from other threads
No need for cache setup or locking




Reference: Page Cache Locking
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Unaligned DIO: Buffers, but no cache
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Unaligned DIO = Hybrid I/0
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Unaligned DIO allows any |0 as DIO

e Removes memory alignment requirement

* A little slower than regular DIO — But still very fast
* Enables hybrid 10

Hybrid 10:

e Use buffered IO for small 10
* Benefit from readahead and write aggregation

e Use unaligned direct IO for large 10
* Performance goes up with 1/0 size throughout
Let’s see what that looks like...




Notes on Numbers

* Most data gathered on an NVIDIA DGX, many CPUs and multiple NICs
* Shared file info gathered on dual socket OCl systems

* All numbers should be understood as general guidance — look at trends and relative
values, not specific numbers
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Hybrid 10: Write Performance

Bandwidth vs I/O Size: Write
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Hybrid 10: Read Performance

Bandwidth vs I/O Size: Read
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Hybrid 1/0 Performance

e Same as buffered at small sizes
* Uses unaligned DIO for larger sizes

* Max at 19 GiB/s — About 90% of DIO

* Compared to DIO, Unaligned DIO must:
 Allocate buffer memory
* Copy data to/from buffers

» Buffered 10 has to do these steps, but also cache setup
e But because it’s Direct 10, there’s no cache
* And we can do that allocation and copying in parallel.

* Hybrid 10 is also lockless, which has implications for shared file writes...
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Single Client Shared File: Writes
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Hybrid 10: Shared File — Multi-Client Write
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Single client shared file write blocks on page cache locking

* Hybrid IO avoids this entirely

* But what about using multiple clients?

Multiple clients writing to a shared file is a well-known pain point
* Clients get Lustre distributed locks (LDLM) from the servers

* Multiple clients writing to the same file bounce the locks around
* Even if writes don’t overlap

* Write to one file doesn’t scale with more clients unless you do something special
* MPIIO, lockahead, overstriping, group locks...

But Direct |0 doesn’t use the cache... So clients don’t use LDLM locks.
» So for larger writes, neither does hybrid 10
* The effect of this is dramatic.




Multi-Client Shared File Writes

Bandwidth vs Process Count: Shared File Write (8 clients, 4 MiB writes)
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Hybrid 1/0 2023 vs Hybrid 1/0 2024

* Last year, parallel allocation and parallel data copy weren’t ready
* Hybrid 10 writes were at only 3 GiB/s (now 20 GiB/s)
e Hybrid 10 reads at 12 GiB/s max (now 20 GiB/s)

* Switched to page pools for allocations
* Borrowed from the compression & encryption code

* Added parallel copy for writes
* Thanks to Shaun Tancheff of HPE, who was instrumental in getting this working
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Hybrid 10 in 2.16
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Hybrid 10 is in Lustre 2.16
Automatically switch between buffered and direct 10 based on size

Opt-in for now — Must be enabled:
e Ictl set_param llite.*.hybrid = 1
 Some obscure bugs in testing, but passes all 10 consistency tests, etc

Aiming for gradual phase in

* On bydefaultin2.17

e Currently only switch based on IO size
e Switch in more situations as we are sure it improves performance
* eg, lock contention

* Also planning performance improvements...




Direct 10 and Hybrid 10 in 2.17+

* DIO path rewrite: LU-13814

e Convert DIO from complex CLIO pages to simple arrays
* No complex lists of dedicated structures for every page — just simple arrays
* Huge efficiency improvement

* Max single threaded DIO speed is 22 GiB/s today
e LU-13814 takes single threaded DIO to 100 GiB/s
* DIO improvements boost hybrid 10 performance
* Hybrid + LU-13814 = 45 GiB/s (from 20 GiB/s today)
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https://jira.whamcloud.com/browse/LU-13814

Hybrid 10 Recap
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Buffered 10 is:
* Good for small 10 (readahead, write aggregation)
* Poor for large IO (no scalability)

Direct 10 is:
 Terrible for small 10 (sync)

 Scalable for large 10
e Lockless

Hybrid 10: Automatically get the best of both

» Buffered performance for small reads & writes (20x improvement vs small DIO)
* DIO-like scaling for large reads & writes (~¥10x improvement vs large buffered)
* Solves shared file write problem on local node & across cluster (20-50x improvement)

Hybrid 10 is in Lustre 2.16, out later this year.




Thank you

Thank you for listening.
See LU-13805 for further details.

Questions to patrick.farrell@oracle.com

Thanks to Whamcloud and Oracle for supporting this work.
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