
LUG 2017

Scaling LDISKFS for the future. Again

Artem Blagodarenko
LUG 2017
Bloomington, Indiana

LUG 2017

LDISKFS still grows

The maximum backend
storage size increases

As drive size increases

...16TB -> 500TB
LDISKFS quickly exceeded

the original design!

...8TB -> 10TB -> 12TB

LUG 2017

The summary of previous work

Done

➢code review
➢testing suite
➢patches with fixes
➢move LDISKFS size

limit to 256TB (LU-
7592).

➢ Extending inodes
count over
UINT32_MAX

➢ Large memory
blocks allocation

➢ Large directories

Problems

➢ inodes count over
UINT32_MAX

➢ large memory blocks
allocation

➢ solution for large
directories

LUG 2017

Inode count limit (LU-1365)
Example: a customer requires 16 billions of inodes on MDS

Unfortunately we can not make
16 billions inodes on one MDT
because of LDISKFS limitation

>4 billions inodes on LDISKFS

We can use 4 MDTs with DNE
but MDT’s space is not
completely used

Only 4 billions of inodes on
one MDT

mdt0 mdt1

mdt2 mdt3

16 billions

LUG 2017

Inode count limit. Additional fields for ext4_dir_entry
Offset Size Name Description

0x0 __le32 inode Inode number

0x4 __le16 rec_len Length of this directory entry

0x6 __u8 name_len Length of the file name

0x7 __u8 file_type File type (0x0F), Dirdata (0xF0)

0x8 __u8 lufid_len OST fid length

0x9 N fid EXT4_DIRENT_LUFID

0x8 + N __u8 hi_inode_len length, always 4

0x8 + N + 1 __le64 hi_inode EXT4_DIRENT_INODE

LUG 2017

dirdata pros and cons

➕ less space for 64-bit inodes
➕ smaller dirents for 32-bit inodes
➕ more 32-bit dirents in leaf block
➕ backwards compatible with

existing directories
➕ doesn’t require full update

➖ not obvious
➖ requires some extra code

LUG 2017

Large directory (LU-1365)

headerlevel 1

direntlevel 2

direntleaf

index 1 =
block size - header size

index size

index 2 =
block size - header size

index size

dirent in leaf =
block size

name length + dirent size

entries in directory = index 1 * index 2 * dirent in leaf

Single directory capacity depends from names size and for
average file system is ~10 millions of entries

LDISKFS entries count
is limited by 2GB

directory size and 2
level htree

LUG 2017

Large directory feature

Support for
e2fsprogs

Tests added.
Performance
estimated.

Patches
submitted to
upstreamCherrypicked

from upstream.
Added
documentation

Added to
LDISKFS as part

of the pdirops
(LU-50)

LUG 2017

testing large_dir

● 120M
● ldiskfs only
● hard links
● createmany utility

config_sanity.sh 101
"Adding large_dir with
3-level htree"

config_sanity.sh 102
"Adding large_dir with
over 2GB directory"

LUG 2017

Challenges
● On large mdt targets before 64-bit inode counter

patch is landed inode number can be > 4 billions. In
this case formatting is finished with error. Adjusted
automatically (LU-9501).

● Large memory structures. Code inspection.

● Group blocks count exceeds EXT4 design

● LU-8444 ldiskfs_xattr_inode_iget: error while reading
EA inode -2147483347" on large MDT volumes with
large_xattr feature enabled (test added, LU-8444)

LUG 2017

● all block group descriptors copies are
kept in the first block group

● Given the default 128MiB(2^27 bytes)
block group size and 64-byte group
descriptors, ext4 can have at most
2^27/64 = 2^21 block groups

● This limits the entire filesystem size to
2^21 ∗ 2^27 = 2^48 bytes or 256 TiB

Group blocks count problem

Two solutions:
✓ meta_bg
✓ bigalloc We get meta_bg feature as solution

LUG 2017

Meta_bg feature

meta_bg is the obvious way to solve the trouble with the
group descriptors. They will not be able to fit into the first
group after it grows beyond some count of blocks (because
partition is too large). meta_bg solve this problem, so we
can have as many block groups as we need.

Meta_bg allowing support for a 512PiB filesystem
1
bl

1
bl

1
bl

blocks group

LUG 2017

● LU-9501 "libext2fs: automatically enable
meta_bg to avoid filling up BG 0"

● LU-9160 libext2: readahead for meta_bg
● ldiskfs: preload block groups. landed to EXT4

and e2fsprogs
● LU-8976 Apply patch "libext2fs: fix maximum bg

overhead calculation with meta_bg enabled"
● LU-8443 utils: exclude "resize" parameter with

meta_bg option

Meta_bg. Patches

LUG 2017

Loading metadata during mount (LU-9160)

With enabled meta_bg option block group descriptors
reading IO is not sequential and requires optimization.
Example:
● There are ~37k of random IOs with meta_bg option

on 300T target.
● Debugfs requires 20 minutes to be started.
● Enabling readahead for group blocks metadata save

time dramatically. Only 12s to start. (landed to
EXT4)

LUG 2017

Bigalloc

Bigalloc feature decreases the needed number of blocks
groups, because “block” (called cluster) became bigger
(for example 64k against the 4k).

The administrator can set a block cluster size

group 0 group 1 group 2 group 3 group 5

group 0 group 1 group 2

LUG 2017

Bigalloc vs meta_bg

➕ Less metadata ➖ more metadata
➖ memory usage

➖ not good
for small
files

bigalloc metabg

➖ Looks unstable
(issues with quota
and links found
during tests)

➕ passed testing
➕ good for small

files
➕ can be applied to

existing systems

LUG 2017

Testing

● Mount the 256 TB+ device
as ldiskfs to ensure
lustre/kernel supports
huge file systems

● Run e2fsprogs utilities to
ensure 256 TB+ support

● Running modified xfstest
for stress testing

● Run llverfs and lldevfs to
ensure that the kernel can
perform operations on the
device without any errors

● Setup OST on this device
to ensure Lustre can
handle huge devices and
run Lustre testsuite

Components To Be Tested

e2fsprogs ldiskfs Lustre

The goals
for testing

LUG 2017

This work allows customers to have fewer, larger OSTs resulting
in decreased resource requirements on clients customers and
allows customers to deploy have denser storage.

To address concerns regarding these issues Seagate has
developed an open source code review and updated testing
suite.The suite has successfully verified new patches that improved
performance, resulting in open source upstreamed patches
increasing the ldiskfs size limit to 512TB (LU-8974).

Results

LUG 2017

Current work is focused on
researching possible scaling

problems and providing
solutions for extending the

limit above 512TB.

Current work
● large dir landing
● 64 inode inode pointer in progress
● bigalloc testing and adapting to Lustre FS

LUG 2017

Thanks to

Alexey Lyashkov (Seagate)
Elena Gryaznova (Seagate)

Andreas Dilger (Intel)

Acknowledgments

LUG 2017

Thank you!

